Nothing
#' @title Weights Multiply Imputed Datasets
#'
#' @rdname weightthem
#'
#' @param formula A `formula` of the form `z ~ x1 + x2`, where `z` is the exposure and `x1` and `x2` are the covariates to be balanced, which is passed directly to [WeightIt::weightit()] to specify the propensity score model or treatment and covariates to be used to estimate the weights. See [WeightIt::weightit()] for details.
#' @param datasets The datasets containing the exposure and covariates mentioned in the `formula`. This argument must be an object of the `mids` or `amelia` class, which is typically produced by a previous call to `mice()` from the \pkg{mice} package or to `amelia()` from the \pkg{Amelia} package (the \pkg{Amelia} package is designed to impute missing data in a single cross-sectional dataset or in a time-series dataset, currently, the \pkg{MatchThem} package only supports the former datasets).
#' @param approach The approach used to combine information in multiply imputed datasets. Currently, `"within"` (estimating weights within each dataset), `"across"` (estimating propensity scores within each dataset, averaging them across datasets, and computing a single set of weights based on that to be applied to all datasets), and `"apw"` (or averaging the probability weights, estimating weights within each dataset and averaging them across datasets) approaches are available. The default is `"within"`, which has been shown to have superior performance in most cases.
#' @param method The method used to estimate weights. See [WeightIt::weightit()] for allowable options. Only methods that produce a propensity score (`"glm"`, `"gbm"`, `"ipt"` `"cbps"`, `"super"`, and `"bart"`) are compatible with the `"across"` approach). The default is `"glm"` propensity score weighting using logistic regression propensity scores.
#' @param ... Additional arguments to be passed to `weightit()`. see [WeightIt::weightit()] for more details.
#'
#' @description `weightthem()` performs weighting in the supplied multiply imputed datasets, given as `mids` or `amelia` objects, by running [WeightIt::weightit()] on each of the multiply imputed datasets with the supplied arguments.
#'
#' @details If an `amelia` object is supplied to `datasets`, it will be transformed into a `mids` object for further use. `weightthem()` works by calling [mice::complete()] on the `mids` object to extract a complete dataset, and then calls [WeightIt::weightit()] on each dataset, storing the output of each `weightit()` call and the `mids` in the output. All arguments supplied to `weightthem()` except `datasets` and `approach` are passed directly to `weightit()`. With the `"across"` approach, the estimated propensity scores are averaged across imputations and re-supplied to another set of calls to `weightit()`.
#'
#' @return An object of the [wimids()] (weighted multiply imputed datasets) class, which includes the supplied `mids` object (or an `amelia` object transformed into a `mids` object if supplied) and the output of the calls to `weightit()` on each multiply imputed dataset.
#'
#' @seealso [`wimids`]
#' @seealso [with()]
#' @seealso [pool()]
#' @seealso [matchthem()]
#' @seealso [WeightIt::weightit()]
#'
#' @author Farhad Pishgar and Noah Greifer
#'
#' @references Stef van Buuren and Karin Groothuis-Oudshoorn (2011). `mice`: Multivariate Imputation by Chained Equations in `R`. *Journal of Statistical Software*, 45(3): 1-67. \doi{10.18637/jss.v045.i03}
#'
#' @export
#'
#' @examples \donttest{#1
#'
#' #Loading the dataset
#' data(osteoarthritis)
#'
#' #Multiply imputing the missing values
#' imputed.datasets <- mice::mice(osteoarthritis, m = 5)
#'
#' #Estimating weights of observations in the multiply imputed datasets
#' weighted.datasets <- weightthem(OSP ~ AGE + SEX + BMI + RAC + SMK,
#' imputed.datasets,
#' approach = 'within',
#' method = 'glm',
#' estimand = 'ATT')
#'
#' #2
#'
#' #Loading the dataset
#' data(osteoarthritis)
#'
#' #Multiply imputing the missing values
#' imputed.datasets <- Amelia::amelia(osteoarthritis, m = 5,
#' noms = c("SEX", "RAC", "SMK", "OSP", "KOA"))
#'
#' #Estimating weights of observations in the multiply imputed datasets
#' weighted.datasets <- weightthem(OSP ~ AGE + SEX + BMI + RAC + SMK,
#' imputed.datasets,
#' approach = 'within',
#' method = 'glm',
#' estimand = 'ATT')}
weightthem <- function (formula, datasets,
approach = "within",
method = "glm", ...) {
#External function
#Importing functions
#' @importFrom WeightIt weightit
#' @importFrom mice complete as.mids
#' @importFrom stats as.formula
WeightIt::weightit
mice::complete
stats::as.formula
#' @export
#Polishing variables
called <- match.call()
originals <- datasets
classed <- class(originals)
if (identical(approach, "pool-then-match")) {approach <- "across"}
else if (identical(approach, "match-then-pool")) {approach <- "within"}
#Checking inputs format
if(missing(datasets) || length(datasets) == 0) {stop("The input for the datasets must be specified.")}
if(!inherits(datasets, "mids") && !inherits(datasets, "amelia")) {stop("The input for the datasets must be an object of the 'mids' or 'amelia' class.")}
if(!is.null(datasets$data$estimated.distance) && approach == "across") {stop("The input for the datasets shouldn't have a variable named 'estimated.distance', when the 'across' weighting approch is selected.")}
if(!is.null(datasets$data$weights)) {stop("The input for the datasets shouldn't have a variable named 'weights'.")}
approach <- match.arg(approach, c("within", "across", "apw"))
if(approach == "across" && (!(method %in% c("glm", "ps", "gbm", "ipt", "cbps", "super", "bart")))) {stop("The input for the weighting method must be 'glm', 'gbm', 'ipt', 'cbps', 'super', or 'bart' when the 'across' weighting approch is selected.")}
#Compatibility with amelia objects
if (inherits(datasets, "amelia")) {
imp0 <- datasets$imputations[[1]]
is.na(imp0) <- datasets$missMatrix
imp0$.id <- 1:nrow(imp0)
imp0$.imp <- 0
implist <- vector("list", datasets$m + 1)
implist[[1]] <- imp0
for (i in 1:datasets$m) {
imp <- datasets$imputations[[i]]
imp$.id <- 1:nrow(imp0)
imp$.imp <- i
implist[[i+1]] <- imp
}
imp.datasets <- do.call(base::rbind, as.list(noquote(implist)))
datasets <- mice::as.mids(imp.datasets)
originals <- datasets
}
#Within
if (approach == "within") {
#Defining the lists
modelslist <- vector("list", datasets$m)
#Longing the datasets
for (i in 1:datasets$m) {
#Printing out
if (i == 1) message(paste0("Estimating weights | dataset: #", i), appendLF = FALSE)
else message(paste0(" #", i), appendLF = FALSE)
#Building the model
dataset <- mice::complete(datasets, i)
model <- WeightIt::weightit(formula, dataset,
method = method, ...)
#Updating the lists
modelslist[[i]] <- model
}
}
#Across
if (approach == "across") {
#Defining the lists
modelslist <- vector("list", datasets$m)
distancelist <- vector("list", datasets$m)
#Calculating the averaged distances
for (i in 1:datasets$m) {
#Printing out
if (i == 1) message(paste0("Estimating distances | dataset: #", i), appendLF = FALSE)
else message(paste0(" #", i), appendLF = FALSE)
#Building the model
dataset <- mice::complete(datasets, i)
modelslist[[i]] <- model <- WeightIt::weightit(formula, dataset,
method = method, ...)
#Distances
if (length(model$ps) == 0 || length(dim(model$ps) > 1)) {
stop("No propensity scores were estimated. Use a different 'approach'.")
}
distancelist[[i]] <- model$ps
}
#Updating the distances
d <- rowMeans(as.matrix(do.call(base::cbind, distancelist)))
#Adding averaged distances to datasets
for (i in 1:(datasets$m)) {
dataset <- mice::complete(datasets, i)
#Printing out
if (i == 1) message(paste0("\n", "Estimating weights | dataset: #", i), appendLF = FALSE)
else message(paste0(" #", i), appendLF = FALSE)
#Building the model
model <- WeightIt::weightit(formula, dataset,
method = "glm",
ps = d, ...)
#Updating the list
modelslist[[i]][c("weights", "ps")] <- model[c("weights", "ps")]
attr(modelslist[[i]], "Mparts") <- NULL
}
}
#APW
if (approach == "apw") {
#Defining the lists
modelslist <- vector("list", datasets$m)
weightlist <- vector("list", datasets$m)
#Calculating the averaged weights
for (i in 1:datasets$m) {
#Printing out
if (i == 1) message(paste0("Estimating weights | dataset: #", i), appendLF = FALSE)
else message(paste0(" #", i), appendLF = FALSE)
#Building the model
dataset <- mice::complete(datasets, i)
modelslist[[i]] <- model <- WeightIt::weightit(formula, dataset,
method = method, ...)
#Weights
weightlist[[i]] <- model$weights
}
#Updating the weights
w <- rowMeans(as.matrix(do.call(base::cbind, weightlist)))
#Adding averaged weights to datasets
for (i in 1:(datasets$m)) {
#Printing out
if (i == 1) message(paste0("\n", "Averaging weights | dataset: #", i), appendLF = FALSE)
else message(paste0(" #", i), appendLF = FALSE)
#Updating the list
modelslist[[i]]$weights <- w
modelslist[[i]]$ps <- NULL
modelslist[[i]]$s.weights <- NULL
attr(modelslist[[i]], "Mparts") <- NULL
}
}
#Returning output
output <- list(call = called,
object = datasets,
models = modelslist,
approach = approach)
class(output) <- "wimids"
message("\n", appendLF = FALSE)
return(output)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.