- Home
- CRAN
**MetStaT**: Statistical metabolomics tools**MetStaT.ConvertToNumericClasses**: Convert value-types in an array or matrix (per column) to...

# Convert value-types in an array or matrix (per column) to pre-defined class-values

### Description

This functions converts values in an array or matrix-column to pre-defined class-values. Each unique value in the array or matrix-column is assigned to a class-value in order of occurrence. For a matrix, this process is repeated per column (the user can define which columns). Default pre-defined class-values are -1 to 100.

### Usage

1 | ```
MetStaT.ConvertToNumericClasses(data, cols = NULL, new.classes = NULL)
``` |

### Arguments

`data` |
an array or matrix containing the values to be converted to class values. |

`cols` |
which columns of the matrix need to be converted. |

`new.classes` |
user defined class values to be used (re-used in case class types needed exceeds class types defined) |

### Value

The same array or matrix as the input, but with each value replaced with numerical class values.

### Author(s)

Tim Dorscheidt

Want to suggest features or report bugs for rdrr.io? Use the GitHub issue tracker. Vote for new features on Trello.

- ASCA.Calculate: ASCA method (ANOVA-simultaneous component analysis)
- ASCA.Calculate: ASCA method (ANOVA-simultaneous component analysis)
- ASCAdata: Example data for ASCA.Calculate
- ASCAdata: Example data for ASCA.Calculate
- ASCA.DoPermutationTest: Permutation test for ASCA
- ASCA.DoPermutationTest: Permutation test for ASCA
- ASCAF: Indicator matrix for ASCA example.
- ASCAF: Indicator matrix for ASCA example.
- ASCA.GetPowerSet: Determines the power set of the input set.
- ASCA.GetPowerSet: Determines the power set of the input set.
- ASCA.GetRowRepeats: Determination of all unique row value combinations
- ASCA.GetRowRepeats: Determination of all unique row value combinations
- ASCA.GetSummary: Summary method for ASCA analyses
- ASCA.GetSummary: Summary method for ASCA analyses
- ASCA.Plot: Plot ASCA results
- ASCA.Plot: Plot ASCA results
- ASCA.PlotLoadings: Loadings plot for a specific factor/interaction of the ASCA
- ASCA.PlotLoadings: Loadings plot for a specific factor/interaction of the ASCA
- ASCA.PlotScores: Score plot for a specific factor or interaction of the ASCA
- ASCA.PlotScores: Score plot for a specific factor or interaction of the ASCA
- ASCA.PlotScoresPerLevel: ASCA scores plot with projected data.
- ASCA.PlotScoresPerLevel: ASCA scores plot with projected data.
- ASCAX: Data matrix for ASCA example
- ASCAX: Data matrix for ASCA example
- FoM.Calculate: Calculate best fitting Figure of Merit using method by Van...
- FoM.Calculate: Calculate best fitting Figure of Merit using method by Van...
- FoMData: Example data for FoM.Calculate
- FoMData: Example data for FoM.Calculate
- FoM.FitBinnedSampleRepeatErrors: Fitting step in Figure of Merit calculation.
- FoM.FitBinnedSampleRepeatErrors: Fitting step in Figure of Merit calculation.
- FoM.GetIdOrderedMatrix: Order the matrix of samples by their ID
- FoM.GetIdOrderedMatrix: Order the matrix of samples by their ID
- FoM.OrderAndBinIdByMeans: Bin sample repeats and samples with similar means
- FoM.OrderAndBinIdByMeans: Bin sample repeats and samples with similar means
- MetStaT.ConcatWithStringPars: Concatenates an array of strings
- MetStaT.ConcatWithStringPars: Concatenates an array of strings
- MetStaT.ConvertToNumeric: Converts a matrix of strings to numeric values
- MetStaT.ConvertToNumeric: Converts a matrix of strings to numeric values
- MetStaT.ConvertToNumericClasses: Convert value-types in an array or matrix (per column) to...
- MetStaT.ConvertToNumericClasses: Convert value-types in an array or matrix (per column) to...
- MetStaT.CreateFileFromHeaderMatrix: Writes a matrix to file with column names and optionally row...
- MetStaT.CreateFileFromHeaderMatrix: Writes a matrix to file with column names and optionally row...
- MetStaT.CreateFileFromHeaderRowMatrix: Writes a matrix to file with row and column names, and...
- MetStaT.CreateFileFromHeaderRowMatrix: Writes a matrix to file with row and column names, and...
- MetStaT.ExportDataToFile: Exports the results of supplied R expressions as text files...
- MetStaT.ExportDataToFile: Exports the results of supplied R expressions as text files...
- MetStaT.GetFreqTable: Tabulates the frequency of all unique values.
- MetStaT.GetFreqTable: Tabulates the frequency of all unique values.
- MetStaT.GetPcTuples: Obtain all possible pairs of principal components out of a...
- MetStaT.GetPcTuples: Obtain all possible pairs of principal components out of a...
- MetStaT.KillAllDevices: Kills all currently active plot windows.
- MetStaT.KillAllDevices: Kills all currently active plot windows.
- MetStaT.mldivide: Matrix left hand division using a copy of the 'pracma'...
- MetStaT.mldivide: Matrix left hand division using a copy of the 'pracma'...
- MetStaT.mrdivide: Matrix right hand division using a copy of the 'pracma'...
- MetStaT.mrdivide: Matrix right hand division using a copy of the 'pracma'...
- MetStaT.PlotToFile: Save results of R plotting expressions to files in a zip...
- MetStaT.PlotToFile: Save results of R plotting expressions to files in a zip...
- MetStaT.ReadFileToHeaderMatrix: Reads a data file to a matrix.
- MetStaT.ReadFileToHeaderMatrix: Reads a data file to a matrix.
- MetStaT.RemoveNaColumns: Removes all columns in a matrix that contain one or more NAs.
- MetStaT.RemoveNaColumns: Removes all columns in a matrix that contain one or more NAs.
- MetStaT.ScalePip: Centering and scaling function
- MetStaT.ScalePip: Centering and scaling function
- MetStaT.TrimCustom: Limits an input string to a certain length
- MetStaT.TrimCustom: Limits an input string to a certain length
- MetStaT.WriteDataObjectToFile: Write data contained within an R object as character output...
- MetStaT.WriteDataObjectToFile: Write data contained within an R object as character output...
- PCA.Calculate: Adapted version of R's base Principal Component Analysis...
- PCA.Calculate: Adapted version of R's base Principal Component Analysis...
- PCA.PlotLoadings: Loadings plot for the results of PCA.Calculate
- PCA.PlotLoadings: Loadings plot for the results of PCA.Calculate
- PCA.PlotScores: Score plot for the results of PCA.Calculate.
- PCA.PlotScores: Score plot for the results of PCA.Calculate.
- QStat.Calculate: Global test for metabolic pathway differences between...
- QStat.Calculate: Global test for metabolic pathway differences between...
- QStat.PermutationTest: Accompanying permutation test for QStat.Calculate
- QStat.PermutationTest: Accompanying permutation test for QStat.Calculate
- QStatX: Data matrix for QStat.Calculate example
- QStatX: Data matrix for QStat.Calculate example
- QStatY: Matrix for QStat.Calculate example
- QStatY: Matrix for QStat.Calculate example
- RevNetJacobian: Example data for RevNetJacobianMethod
- RevNetJacobian: Example data for RevNetJacobianMethod
- RevNet.JacobianMethod: Reverse engineering of networks: Penalized Jacobian method
- RevNet.JacobianMethod: Reverse engineering of networks: Penalized Jacobian method
- RevNetTimeLagged: Example data for RevNetTimeLaggedMethod
- RevNetTimeLagged: Example data for RevNetTimeLaggedMethod
- RevNet.TimeLaggedMethod: Reverse engineering of networks: Time-lagged correlation...
- RevNet.TimeLaggedMethod: Reverse engineering of networks: Time-lagged correlation...
- RevNetZeroSlopes: Example data for RevNetZeroSlopesMethod
- RevNetZeroSlopes: Example data for RevNetZeroSlopesMethod
- RevNet.ZeroSlopesMethod: Reverse engineering of networks: zero slopes method
- RevNet.ZeroSlopesMethod: Reverse engineering of networks: zero slopes method
- SteadyState: Example data for RevNetJacobianMethod
- SteadyState: Example data for RevNetJacobianMethod