inst/doc/simulateIsoMC.R

## ----echo = FALSE-------------------------------------------------------------
knitr::opts_chunk$set(collapse = TRUE, 
                      comment = "#>", 
                      tidy = FALSE,
                      message = FALSE,
                      warning = FALSE)

## ----eval = FALSE-------------------------------------------------------------
# library(terra)
# library(MigConnectivity)
# library(sf)

## ----eval = FALSE-------------------------------------------------------------
# # read in raster layer
# download.file(
# "https://raw.githubusercontent.com/SMBC-NZP/MigConnectivity/master/data-raw/Spatial_Layers/bbsoven.txt",
#               destfile = "bbsoven.txt")
# 
# OVENabund <- terra::rast("bbsoven.txt")
# 
# OVENdist <- OVENabund
# OVENdist[OVENdist>0]<-1
# OVENdist[OVENdist==0]<-NA
# 
# OVEN_single_poly <- terra::as.polygons(OVENdist)
# terra::crs(OVEN_single_poly) <- MigConnectivity::projections$WGS84
# terra::crs(OVENabund) <- MigConnectivity::projections$WGS84

## ----eval = FALSE-------------------------------------------------------------
# ### get isotope raster for template
# rasterTemplate <- getIsoMap()

## ----eval = FALSE-------------------------------------------------------------
# terra::crs(rasterTemplate) <- MigConnectivity::projections$WGS84
# rasterTemplate <- terra::crop(terra::mask(rasterTemplate,
#                                           OVEN_single_poly),
#                               OVEN_single_poly)
# 
# # rasterize the distribution for relative abundance so that raster
# # dimensions and resolution match the isotope layer
# relativeAbund <- terra::project(OVENabund,rasterTemplate)
# relativeAbund  <- relativeAbund /
#   unlist(c(terra::global(relativeAbund, fun = "sum", na.rm = T)))

## ----eval = FALSE-------------------------------------------------------------
# # generate target sites
# targetRanges <- vector('list',5)
# # 3' latitude
# targetRanges[[1]] <- terra::as.polygons(terra::rast(xmin = -180,
#                                          xmax = -40,
#                                          ymin = 25,
#                                          ymax = 85,
#                                          resolution = c(140,3)))
# 
# # 5' latitude
# targetRanges[[2]] <- terra::as.polygons(terra::rast(xmin = -180,
#                                              xmax = -40,
#                                              ymin = 25,
#                                              ymax = 85,
#                                              resolution = c(140,5)))
# 
# # 10' latitude
# targetRanges[[3]] <- terra::as.polygons(terra::rast(xmin = -180,
#                                          xmax = -40,
#                                          ymin = 25,
#                                          ymax = 85,
#                                          resolution = c(140,10)))
# 
# # 12 isotope units
# featherIso <- (0.95*getIsoMap(period = "GrowingSeason")+(-17.57))
# iso <- terra::crop(featherIso, terra::ext(c(-180,-40,25,85)))
# isocut <- terra::classify(iso,
#                           rcl = seq(terra::global(iso, fun = "min",
#                                                   na.rm = TRUE)$min,
#                                     terra::global(iso, fun = "max",
#                                                   na.rm = TRUE)$max,12))
# targetRanges[[4]] <- terra::as.polygons(isocut)
# 
# 
# # 12*2 isotope units
# isocut <- terra::classify(iso,
#                           rcl = seq(terra::global(iso, fun = "min",
#                                                   na.rm = TRUE)$min,
#                                     terra::global(iso,fun = "max",
#                                                   na.rm = TRUE)$max, 24))
# targetRanges[[5]] <- terra::as.polygons(isocut)
# 
# 
# TR <- lapply(targetRanges, sf::st_as_sf)
# vTR <- lapply(TR, sf::st_make_valid)
# vTR <- lapply(vTR, FUN = function(x){sf::st_set_crs(x, 4326)})
# 
# sf_use_s2(FALSE)
# OVEN_single_poly <- sf::st_as_sf(OVEN_single_poly) %>% sf::st_make_valid()
# 
# 
# # Keep only the targetSites that intersect with the OVEN polygon
# targetRanges <- lapply(vTR, FUN = function(x){sf::st_intersection(x,OVEN_single_poly)})
# 
# targetRanges <- lapply(targetRanges, FUN = function(x){y <- sf::st_as_sf(x)
#                                                        z <- sf::st_transform(y,4326)
#                                                        return(z)})
# 
# for(i in 1:5){
#   targetRanges[[i]]$Target <- 1:nrow(targetRanges[[i]])
# }
# targetRanges <- lapply(targetRanges, sf::st_make_valid)
# sf_use_s2(TRUE)

## ----eval = FALSE-------------------------------------------------------------
# #Generate random breeding locations using the 10' target sites
# Site1 <- st_as_sf(sf::st_sample(targetRanges[[3]][1:2,], size =100, type = "random"))
# Site2 <- st_as_sf(sf::st_sample(targetRanges[[3]][2:3,], size =100, type = "random"))
# Site3 <- st_as_sf(sf::st_sample(targetRanges[[3]][2:4,], size =100, type = "random"))
# 
# # Capture coordinates
# capCoords <- array(NA,c(3,2))
# capCoords[1,] <- cbind(-98.17,28.76)
# capCoords[2,] <- cbind(-93.70,29.77)
# capCoords[3,] <- cbind(-85.000,29.836)
# 
# featherIso <- (0.95*getIsoMap(period = "GrowingSeason")+(-17.57))
# 
# # Extract simulated data
# iso_dat <- data.frame(Site = rep(1:3, each = 100),
#                       xcoords = c(sf::st_coordinates(Site1)[,1],
#                                   sf::st_coordinates(Site2)[,1],
#                                   sf::st_coordinates(Site3)[,1]),
#                       ycoords = c(sf::st_coordinates(Site1)[,2],
#                                   sf::st_coordinates(Site2)[,2],
#                                   sf::st_coordinates(Site3)[,2]),
#                       targetSite = unlist(unclass(sf::st_intersects(rbind(Site1,
#                                                                           Site2,
#                                                                           Site3),
#                                         targetRanges[[3]]))),
#                       featherIso = terra::extract(featherIso,
#                                                   terra::vect(rbind(Site1,Site2,
#                                                                     Site3))))
# 
# iso_dat <- iso_dat[complete.cases(iso_dat),]
# 
# # generate transition data from simulation
# sim_psi <- table(iso_dat$Site, iso_dat$targetSite)
# 
# for(i in 1:nrow(sim_psi)){
#   sim_psi[i,]<-sim_psi[i,]/sum(sim_psi[i,])
# }
# 
# states <- rnaturalearth::ne_states(country = "United States of America",
#                                    returnclass = "sf")
# originSites <- states[(states$woe_name %in% c("Texas","Louisiana","Florida")),]
# originSites <- sf::st_transform(originSites, 4326)
# 
# originDist <- distFromPos(st_coordinates(sf::st_centroid(originSites,
#                                                             byid = TRUE)))
# targetDistMC <- distFromPos(sf::st_coordinates(sf::st_centroid(targetRanges[[3]],
#                                                               byid = TRUE)))

## ----eval = FALSE-------------------------------------------------------------
# originRelAbund <- rep(1/3, 3)
# nTargetSetups <- 5
# nSims <- 2            #SET LOW FOR EXAMPLE
# # nSims <- 200
# nOriginSites = 3
# 
# targetPoints0 <- matrix(NA, 300, 2, dimnames = list(NULL, c("x", "y")))
# 
# 
# a <- Sys.time()
# output.sims <- vector("list", nTargetSetups)
# for(target in 1:nTargetSetups){
#   sim.output <- data.frame(targetSetup = rep(NA,nSims),
#                            sim = rep(NA,nSims),
#                            MC.generated = rep(NA,nSims),
#                            MC.realized = rep(NA,nSims),
#                            MC.est = rep(NA,nSims),
#                            MC.low = rep(NA,nSims),
#                            MC.high = rep(NA,nSims),
#                            rM.realized = rep(NA,nSims),
#                            rM.est = rep(NA,nSims),
#                            rM.low = rep(NA,nSims),
#                            rM.high = rep(NA,nSims))
#   set.seed(9001)
#   targetSites <- targetRanges[[target]]
#   sf_use_s2(FALSE)
#   targetSites <- sf::st_make_valid(targetSites)
#   targetDist <- distFromPos(sf::st_coordinates(sf::st_centroid(targetSites,
#                                                                byid = TRUE)))
# 
#   # Extract simulated data
#   iso_dat <- data.frame(Site = rep(1:3,each = 100),
#                         xcoords = c(sf::st_coordinates(Site1)[,1],
#                                     sf::st_coordinates(Site2)[,1],
#                                     sf::st_coordinates(Site3)[,1]),
#                         ycoords = c(sf::st_coordinates(Site1)[,2],
#                                     sf::st_coordinates(Site2)[,2],
#                                     sf::st_coordinates(Site3)[,2]),
#                         targetSite = unlist(unclass(sf::st_intersects(rbind(Site1,
#                                                                             Site2,
#                                                                             Site3),
#                                         targetSites))),
#                         featherIso = terra::extract(featherIso,
#                                                     terra::vect(rbind(Site1,
#                                                                       Site2,
#                                                                       Site3))))
# 
#   iso_dat <- iso_dat[complete.cases(iso_dat),]
# 
#   # generate transition data from simulation
#   sim_psi <- prop.table(table(iso_dat$Site,factor(iso_dat$targetSite,
#                                                   1:nrow(targetSites))), 1)
# 
#   sf_use_s2(TRUE)
#   MC.generated <- calcMC(originDist = originDist,
#                           targetDist = targetDist,
#                           originRelAbund = originRelAbund,
#                           psi = sim_psi)
# 
#   for (sim in 1:nSims) {
#     cat("Simulation Run", sim, "of", nSims, "for target",target,"at", date(), "\n")
#     sim_move <- simMove(rep(100, nOriginSites), originDist, targetDist, sim_psi, 1, 1)
#     originAssignment <- sim_move$animalLoc[,1,1,1]
#     targetAssignment <- sim_move$animalLoc[,2,1,1]
#     sf_use_s2(FALSE)
#     for (i in 1:300) {
#       targetPoint1 <- sf::st_sample(targetSites[targetAssignment[i],],
#                                size = 1, type = "random", iter = 25)
#       targetPoints0[i,] <- sf::st_coordinates(targetPoint1)
#     }
#     targetPoints <- sf::st_as_sf(as.data.frame(targetPoints0), crs = 4326,
#                                  coords = c("x", "y"))
# 
#     # Extract simulated data
#     iso_dat <- data.frame(Site = originAssignment,
#                           xcoords = targetPoints0[,1],
#                           ycoords = targetPoints0[,2],
#                           targetSite = unlist(unclass(sf::st_intersects(targetPoints,
#                                                                         targetSites))),
#                           featherIso = terra::extract(featherIso,
#                                                       terra::vect(targetPoints)))
# 
# 
#     iso_dat <- iso_dat[complete.cases(iso_dat),]
# 
#     # generate transition data from simulation
#     sim_psi0 <- table(iso_dat$Site,
#                       factor(iso_dat$targetSite,
#                              min(targetSites$Target):max(targetSites$Target)))
#     sim_psi_realized <- prop.table(sim_psi0, 1)
# 
#     # get points ready for analysis
#     nSite1 <- table(iso_dat$Site)[1]
#     nSite2 <- table(iso_dat$Site)[2]
#     nSite3 <- table(iso_dat$Site)[3]
# 
#     nTotal <- nSite1+nSite2+nSite3
# 
#     originCap <- array(NA, c(nTotal,2))
# 
#     wherecaught <- rep(paste0("Site", 1:3), c(nSite1, nSite2, nSite3))
# 
#     originCap[which(pmatch(wherecaught,"Site1",dup = TRUE)==1),1] <- capCoords[1,1]
#     originCap[which(pmatch(wherecaught,"Site1",dup = TRUE)==1),2] <- capCoords[1,2]
# 
#     originCap[which(pmatch(wherecaught,"Site2",dup = TRUE)==1),1] <- capCoords[2,1]
#     originCap[which(pmatch(wherecaught,"Site2",dup = TRUE)==1),2] <- capCoords[2,2]
# 
#     originCap[which(pmatch(wherecaught,"Site3",dup = TRUE)==1),1] <- capCoords[3,1]
#     originCap[which(pmatch(wherecaught,"Site3",dup = TRUE)==1),2] <- capCoords[3,2]
# 
#     originPoints <- sf::st_as_sf(as.data.frame(originCap), crs = 4326, coords = 1:2)
#     sf_use_s2(TRUE)
# 
#     MC.realized <- calcMC(originDist = originDist,
#                           targetDist = targetDist,
#                           originRelAbund = originRelAbund,
#                           psi = sim_psi_realized,
#                           sampleSize=nTotal)
# 
# 
# 
#     originPointDists <- distFromPos(originCap)
#     targetPointDists <- distFromPos(cbind(iso_dat$xcoords, iso_dat$ycoords))
# 
# 
#     simAssign <- isoAssign(isovalues = iso_dat$featherIso.GrowingSeasonD,
#                            isoSTD = 12,
#                            intercept = -17.57,
#                            slope = 0.95,
#                            odds = 0.67,
#                            restrict2Likely = FALSE,
#                            nSamples = 500,
#                            sppShapefile = OVEN_single_poly,
#                            relAbund = relativeAbund,
#                            verbose = 2,
#                            isoWeight = -0.7,
#                            abundWeight = 0,
#                            assignExtent = c(-179,-60,15,89),
#                            element = "Hydrogen",
#                            period = "GrowingSeason")
#     psi <- estTransition(targetRaster = simAssign,
#                         targetSites = targetSites,
#                         originPoints = originPoints,
#                         originSites = originSites, isRaster = TRUE,
#                         nSamples = 100, nSim = 5, verbose = 0)
#     rM <- estMantel(targetRaster = simAssign,
#                     targetSites = targetSites,
#                     originPoints = originPoints,
#                     isGL = FALSE, isTelemetry = FALSE,
#                     originSites = originSites, isRaster = TRUE,
#                     nBoot = 100, nSim = 5, verbose = 0, captured = "origin")
#     simEst <- estStrength(originRelAbund = originRelAbund,
#                           targetDist = targetDist,
#                           psi = psi,
#                           originDist = originDist,
#                           nSamples = 100,
#                           verbose = 0,
#                           alpha = 0.05)
# 
#     sim.output$targetSetup[sim] <- target
#     sim.output$sim[sim]<-sim
#     sim.output$MC.generated[sim] <- MC.generated
#     sim.output$MC.realized[sim] <- MC.realized
#     sim.output$MC.est[sim] <- simEst$MC$mean
#     sim.output$MC.low[sim] <- simEst$MC$bcCI[1]
#     sim.output$MC.high[sim] <- simEst$MC$bcCI[2]
#     sim.output$rM.realized[sim] <- calcMantel(originDist = originPointDists,
#                                               targetDist = targetPointDists)$pointCorr
#     sim.output$rM.est[sim] <- rM$corr$mean
#     sim.output$rM.low[sim] <- rM$corr$bcCI[1]
#     sim.output$rM.high[sim] <- rM$corr$bcCI[2]
# 
#   }
#   output.sims[[target]] <- sim.output
# }
# Sys.time()-a
# 
# output.sims <- do.call("rbind", output.sims)
# #

## ----eval = FALSE-------------------------------------------------------------
# sim.output <- transform(output.sims,
#                         MC.generated.cover = as.integer((MC.low <= MC.generated &
#                                                            MC.high >= MC.generated)),
#                         MC.realized.cover = as.integer((MC.low <= MC.realized &
#                                                           MC.high >= MC.realized)),
#                         MC.generated.error = MC.est - MC.generated,
#                         MC.realized.error = MC.est - MC.realized,
#                         rM.cover = as.integer((rM.low <= rM.realized &
#                                                  rM.high >= rM.realized)),
#                         rM.error = rM.est - rM.realized)
# 
# summary(sim.output)
# # Examine results
# aggregate(MC.generated.error ~ targetSetup, sim.output, mean)
# aggregate(MC.generated.error ~ targetSetup, sim.output, function (x) mean(abs(x)))
# aggregate(MC.generated.cover ~ targetSetup, sim.output, mean)
# aggregate(MC.realized.error ~ targetSetup, sim.output, mean)
# aggregate(MC.realized.error ~ targetSetup, sim.output, function (x) mean(abs(x)))
# aggregate(MC.realized.cover ~ targetSetup, sim.output, mean)
# aggregate(I(MC.realized - MC.generated) ~ targetSetup, sim.output, mean)
# aggregate(rM.error ~ targetSetup, sim.output, mean)
# aggregate(rM.error ~ targetSetup, sim.output, function (x) mean(abs(x)))
# aggregate(rM.cover ~ targetSetup, sim.output, mean)
# aggregate(MC.est ~ targetSetup, sim.output, mean)

Try the MigConnectivity package in your browser

Any scripts or data that you put into this service are public.

MigConnectivity documentation built on Aug. 27, 2025, 9:09 a.m.