Nothing
#'@title Dependogram for Cramer-von Mises statistics
#'
#'@description This function, used in EstDep, TestIndCopula and TestIndSerCopula, draws the P-values of the Moebius Cramer-von Mises statistics from the multilinear copula and their combination for a tests of randomness for k consectives values X(1), ..., X(k) or for a test of independence between random variables.
#'
#'@param out List of the output from EstDep, EstDepSerial, TestIndCopula or TestIndSerCopula (P-values, subsets)
#'@param stat Name of statistics to be used (default is "CVM")
#
#'
#'@references Genest, Neslehova, Remillard & Murphy (2019). Testing for independence in arbitrary distributions
#'@examples
#' x <- matrix(rnorm(250),ncol=5)
#' out <-TestIndCopula(x)
#' Dependogram(out)
#'
Dependogram = function(out,stat="CVM")
{
if(stat=="CVM"){
pval = out$pvalue$cvm
}else{
pval = out$pvalues
}
m = length(pval)
subsets = out$subsets
mycol = c("black","red")
x=c(1:m)
Sig = as.factor(as.numeric(pval<5))
x.framed <- data.frame(x, pval,factor=Sig)
new_theme <- theme_update(
axis.text.x = element_text(angle=90, vjust=0.5, size=8))
plot <- ggplot(x.framed, aes(x, pval))
plot <- plot + new_theme
plot <- plot + ggtitle(paste("Dependogram of ", stat, "tests")) + ylab(paste("P-value (%) of", stat))+xlab("Subsets")
plot <- plot + geom_point(stat = "identity")
plot <- plot+geom_point(aes(color=Sig))+ scale_color_manual(values = mycol)
for(i in 1:m){
xs=c(i,i)
ys=c(0,pval[i])
lines <- data.frame(xs,ys)
plot <- plot + geom_path(data = lines, aes(xs,ys))
}
plot <- plot + geom_hline(yintercept=5, color = "red",lty=3)
plot <- plot + geom_hline(yintercept=0, color = "blue")
plot <- plot + scale_x_continuous(breaks = 1:m, labels = as.vector(subsets))
scale_fill_manual(values = mycol)
print(plot)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.