Description Usage Arguments Details Value Author(s) Examples
View source: R/lambda_m_step.R
The function fits the GLM Poisson with given offset.
1 | lambda_m_step(variable, X, offset)
|
variable |
the vector of numbers |
X |
model matrix of the form X=model.matrix(~regressor). In the model without regressor the X sould be defined as X=as.matrix(rep(1, length(variable))) |
offset |
offset in GLM Poisson |
It fits the GLM Poisson, where variable \sim 1 and the ofsset is given as the vector of the variable's length. The results are used in M-step of EM algorithm, cf. [Karlis, 2012] pp. 6850.
lambda |
\hat λ=\hat β X |
beta |
regressor parameters |
glm |
output of \texttt{glm} |
Alicja Wolny–Dominiak, Michal Trzesiok
1 2 3 4 5 | set.seed(1234)
variable=rpois(50,4)
X=as.matrix(rep(1, length(variable)))
t=pseudo_values(variable, mixing=c("invGauss"), lambda=4, delta=1, n=100)
lambda_m_step(variable, X, offset=t$pseudo_values)
|
Loading required package: gaussquad
Loading required package: polynom
Loading required package: orthopolynom
Loading required package: Rmpfr
Loading required package: gmp
Attaching package: 'gmp'
The following objects are masked from 'package:base':
%*%, apply, crossprod, matrix, tcrossprod
C code of R package 'Rmpfr': GMP using 64 bits per limb
Attaching package: 'Rmpfr'
The following object is masked from 'package:gmp':
outer
The following objects are masked from 'package:stats':
dbinom, dnorm, dpois, pnorm
The following objects are masked from 'package:base':
cbind, pmax, pmin, rbind
Loading required package: MASS
$lambda
[,1]
[1,] 0.02082717
[2,] 0.02082717
[3,] 0.02082717
[4,] 0.02082717
[5,] 0.02082717
[6,] 0.02082717
[7,] 0.02082717
[8,] 0.02082717
[9,] 0.02082717
[10,] 0.02082717
[11,] 0.02082717
[12,] 0.02082717
[13,] 0.02082717
[14,] 0.02082717
[15,] 0.02082717
[16,] 0.02082717
[17,] 0.02082717
[18,] 0.02082717
[19,] 0.02082717
[20,] 0.02082717
[21,] 0.02082717
[22,] 0.02082717
[23,] 0.02082717
[24,] 0.02082717
[25,] 0.02082717
[26,] 0.02082717
[27,] 0.02082717
[28,] 0.02082717
[29,] 0.02082717
[30,] 0.02082717
[31,] 0.02082717
[32,] 0.02082717
[33,] 0.02082717
[34,] 0.02082717
[35,] 0.02082717
[36,] 0.02082717
[37,] 0.02082717
[38,] 0.02082717
[39,] 0.02082717
[40,] 0.02082717
[41,] 0.02082717
[42,] 0.02082717
[43,] 0.02082717
[44,] 0.02082717
[45,] 0.02082717
[46,] 0.02082717
[47,] 0.02082717
[48,] 0.02082717
[49,] 0.02082717
[50,] 0.02082717
$beta
X
-3.871497
$glm
Call: glm(formula = variable ~ -1 + X, family = poisson(log), offset = offset)
Coefficients:
X
-3.871
Degrees of Freedom: 50 Total (i.e. Null); 49 Residual
Null Deviance: 16890
Residual Deviance: 406.2 AIC: 562.6
attr(,"class")
[1] "lambda_m_step"
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.