# R/SymmetricContinuousDistances.R In MultBiplotR: Multivariate Analysis Using Biplots in R

#### Defines functions SymmetricContinuousDistances

```SymmetricContinuousDistances <- function(x, coef = "Pythagorean", r = 1) {
distances = c("Pythagorean", "Taxonomic", "City", "Minkowski", "Divergence", "dif_sum", "Camberra", "Bray_Curtis", "Soergel", "Ware_Hedges")
if (is.numeric(coef)) coef = distances[coef]
n = nrow(x)
p = ncol(x)
NamesX=rownames(x)
dis=matrix(0,n,n)
for (i in 1:n) for (j in i:n) {
switch(coef, Pythagorean = {
dis[i, j] = sqrt(sum((x[i, ] - x[j, ])^2))
},Taxonomic = {
dis[i,j]=sqrt(sum(((x[i,]-x[j,])^2)/r^2))
},City = {
dis[i,j]=sum(abs(x[i,]-x[j,]))
},Minkowski = {
dis[i,j]=(sum(abs(x[i,]-x[j,])^r))^(1/r)
},Divergence = {
dis[i,j]=sqrt(sum((x[i,]-x[j,])^2/(x[i,]+x[j,])^2))
},dif_sum = {
dis[i,j]=sum(abs(x[i,]-x[j,])/abs(x[i,]+x[j,]))
},Camberra = {
dis[i,j]=sum(abs(x[i,]-x[j,])/(abs(x[i,])+abs(x[j,])))
},Bray_Curtis = {
dis[i,j]=sum(abs(x[i,]-x[j,]))/sum(x[i,]+x[j,])
},Soergel = {
dis[i,j]=sum(abs(x[i,]-x[j,]))/sum(apply(rbind(x[i,],x[j,]),2,max))
},Ware_Hedges = {
dis[i,j]=sum(1-apply(rbind(x[i,],x[j,]),2,min)/apply(rbind(x[i,],x[j,]),2,max))
})
dis[j,i] = dis[i,j]
}
rownames(dis)=NamesX
colnames(dis)=NamesX
class(dis) = "distances"
return(dis)
}
```

## Try the MultBiplotR package in your browser

Any scripts or data that you put into this service are public.

MultBiplotR documentation built on Nov. 21, 2023, 5:08 p.m.