Description Usage Arguments Value Note References See Also Examples
Given the \hat β covariance matrix (or its estimation), an approximate confidence interval for each λ(t) is calculated using the delta method.
1  | CIdelta.fun(VARbeta, lambdafit, covariates, clevel = 0.95)
 | 
VARbeta | 
 (Estimated) Covariance matrix of the \hat β parameter vector.  | 
lambdafit | 
 Numeric vector of fitted values of the PP intensity \hat λ(t).  | 
covariates | 
 Matrix of covariates to estimate the PP intensity.  | 
clevel | 
 Confidence level of the confidence intervals. A value in the interval (0,1).  | 
A list with elements
LIlambda | 
 Numeric vector of the lower values of the intervals.  | 
UIlambda | 
 Numeric vector of the upper values of the intervals.  | 
lambdafit | 
 Input argument.  | 
fitPP.fun calls CIdelta.fun when the argument is CIty='Delta'.
Casella, G. and Berger, R.L., (2002). Statistical inference. Brooks/Cole.
Cebrian, A.C., Abaurrea, J. and Asin, J. (2015). NHPoisson: An R Package for Fitting and Validating Nonhomogeneous Poisson Processes. Journal of Statistical Software, 64(6), 1-24.
CItran.fun, fitPP.fun, VARbeta.fun
1 2  | aux<-CIdelta.fun(VARbeta=0.01, lambdafit=exp(rnorm(100)), covariates=matrix(rep(1,100)),
	 clevel=0.95)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.