Description Usage Arguments Value Note References See Also Examples
Given the \hat β covariance matrix (or its estimation), an approximate confidence interval for each λ(t)=\exp(ν(t)) is calculated using a transformation of the confidence interval for the linear predictor ν(t)=\textbf{X(t)} β. The transformation is \exp(I_i), where I_i are the confidence limits of ν(t).
1 | CItran.fun(VARbeta, lambdafit, covariates, clevel = 0.95)
|
VARbeta |
(Estimated) Coariance matrix of the \hat β parameter vector. |
lambdafit |
Numeric vector of fitted values of the PP intensity \hat λ(t). |
covariates |
Matrix of covariates to estimate the PP intensity. |
clevel |
Confidence level of the confidence intervals. A value in the interval (0,1). |
A list with elements
LIlambda |
Numeric vector of the lower values of the intervals. |
UIlambda |
Numeric vector of the upper values of the intervals. |
lambdafit |
Input argument. |
fitPP.fun
calls CItran.fun
when the argument is CIty='Transf'.
Casella, G. and Berger, R.L., (2002). Statistical inference. Brooks/Cole.
Cebrian, A.C., Abaurrea, J. and Asin, J. (2015). NHPoisson: An R Package for Fitting and Validating Nonhomogeneous Poisson Processes. Journal of Statistical Software, 64(6), 1-24.
CIdelta.fun
, fitPP.fun
, VARbeta.fun
1 2 | aux<-CItran.fun(VARbeta=0.01, lambdafit=exp(rnorm(100)), covariates=matrix(rep(1,100)),
clevel=0.95)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.