# confintAsin.fun: Compute confidence intervals for the beta parameters In NHPoisson: Modelling and Validation of Non Homogeneous Poisson Processes

## Description

This function computes confidence intervals for the β parameters.

## Usage

 1 confintAsin.fun(mlePP, level = 0.95) 

## Arguments

 mlePP A "mlePP"-class object; usually the output from fitPP.fun. level The confidence level required for the intervals.

## Details

The confidence intervals calculated by this function are based on the asymptotic normal approximation of th MLE of the β parameters, that is ( \hat β -z_{(1-α/2)}s.e.(\hat β ), \hat β +z_{(1-α/2)} s.e.(\hat β ) ) with α=1-level

## Value

A matrix with two columns, the first contains the lower limits of the confidence intervals of all the parameters and the second the upper limits.

## References

Casella, G. and Berger, R.L., (2002). Statistical inference. Brooks/Cole.

Cebrian, A.C., Abaurrea, J. and Asin, J. (2015). NHPoisson: An R Package for Fitting and Validating Nonhomogeneous Poisson Processes. Journal of Statistical Software, 64(6), 1-24.

confint, VARbeta.fun
  1 2 3 4 5 6 7 8 9 10 11 12 13 14 data(BarTxTn) covB<-cbind(cos(2*pi*BarTxTn$dia/365), sin(2*pi*BarTxTn$dia/365), BarTxTn$TTx,BarTxTn$Txm31,BarTxTn$Txm31**2) BarEv<-POTevents.fun(T=BarTxTn$Tx,thres=318, date=cbind(BarTxTn$ano,BarTxTn$mes,BarTxTn$dia)) mod1B<-fitPP.fun(covariates=covB, posE=BarEv$Px, inddat=BarEv\$inddat, tit="BAR Tx; cos, sin, TTx, Txm31, Txm31**2", start=list(b0=-100,b1=1,b2=-1,b3=0,b4=0,b5=0)) confintAsin.fun(mod1B)