View source: R/BerOMNPP_MCMC1.R
| BerOMNPP_MCMC1 | R Documentation | 
Multiple ordered historical data are incorporated together.
Conduct posterior sampling for Bernoulli population with normalized power prior.
For the power parameter \gamma, a Metropolis-Hastings algorithm with independence proposal is used.
For the model parameter p, Gibbs sampling is used.
    BerOMNPP_MCMC1(n0, y0, n, y, prior_gamma, prior_p, gamma_ind_prop,
                   gamma_ini, nsample, burnin, thin, adjust = FALSE)
n0 | 
 a non-negative integer vector: number of trials in historical data.  | 
y0 | 
 a non-negative integer vector: number of successes in historical data.  | 
n | 
 a non-negative integer: number of trials in the current data.  | 
y | 
 a non-negative integer: number of successes in the current data.  | 
prior_gamma | 
 a vector of the hyperparameters in the prior distribution   | 
prior_p | 
 a vector of the hyperparameters in the prior distribution   | 
gamma_ind_prop | 
 a vector of the hyperparameters in the proposal distribution   | 
gamma_ini | 
 the initial value of   | 
nsample | 
 specifies the number of posterior samples in the output.  | 
burnin | 
 the number of burn-ins. The output will only show MCMC samples after burnin.  | 
thin | 
 the thinning parameter in MCMC sampling.  | 
adjust | 
 Logical, indicating whether or not to adjust the parameters of the proposal distribution.  | 
The outputs include posteriors of the model parameter(s) and power parameter, acceptance rate in sampling \gamma.
The normalized power prior distribution is given by:
\frac{\pi_0(\gamma)\pi_0(\theta)\prod_{k=1}^{K}L(\theta|D_{0k})^{(\sum_{i=1}^{k}\gamma_i)}}{\int \pi_0(\theta)\prod_{k=1}^{K}L(\theta|D_{0k})^{(\sum_{i=1}^{k}\gamma_i)}d\theta}.
Here, \pi_0(\gamma) and \pi_0(\theta) are the initial prior distributions of \gamma and \theta, respectively. L(\theta|D_{0k}) is the likelihood function of historical data D_{0k}, and \sum_{i=1}^{k}\gamma_i is the corresponding power parameter.
A list of class "NPP" with three elements:
acceptrate | 
 the acceptance rate in MCMC sampling for   | 
p | 
 posterior of the model parameter   | 
delta | 
 posterior of the power parameter   | 
Qiang Zhang zqzjf0408@163.com
Ibrahim, J.G., Chen, M.-H., Gwon, Y. and Chen, F. (2015). The Power Prior: Theory and Applications. Statistics in Medicine 34:3724-3749.
Duan, Y., Ye, K. and Smith, E.P. (2006). Evaluating Water Quality: Using Power Priors to Incorporate Historical Information. Environmetrics 17:95-106.
BerMNPP_MCMC1,
BerMNPP_MCMC2,
BerOMNPP_MCMC2
BerOMNPP_MCMC1(n0 = c(275, 287), y0 = c(92, 125), n = 39, y = 17, prior_gamma=c(1,1,1)/3,
               prior_p=c(1/2,1/2), gamma_ind_prop=rep(1,3)/2, gamma_ini=NULL,
               nsample = 2000, burnin = 500, thin = 2, adjust = FALSE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.