View source: R/PoiOMNPP_MCMC1.R
| PoiOMNPP_MCMC1 | R Documentation | 
Multiple ordered historical data are incorporated together.
Conduct posterior sampling for Poisson population with normalized power prior.
For the power parameter \gamma, a Metropolis-Hastings algorithm with independence proposal is used.
For the model parameter \lambda, Gibbs sampling is used.
PoiOMNPP_MCMC1(n0,n,prior_gamma,prior_lambda, gamma_ind_prop,
               gamma_ini,nsample,burnin,thin)
| n0 | a natural number vector : number of successes in historical data. | 
| n | a natural number : number of successes in the current data. | 
| prior_gamma | a vector of the hyperparameters in the prior distribution  | 
| prior_lambda | a vector of the hyperparameters in the prior distribution  | 
| gamma_ind_prop | a vector of the hyperparameters in the proposal distribution  | 
| gamma_ini | the initial value of  | 
| nsample | specifies the number of posterior samples in the output. | 
| burnin | the number of burn-ins. The output will only show MCMC samples after bunrin. | 
| thin | the thinning parameter in MCMC sampling. | 
The outputs include posteriors of the model parameter(s) and power parameter, acceptance rate in sampling \gamma.
The normalized power prior distribution is
\frac{\pi_0(\gamma)\pi_0(\lambda)\prod_{k=1}^{K}L(\lambda|D_{0k})^{(\sum_{i=1}^{k}\gamma_i)}}{\int \pi_0(\lambda)\prod_{k=1}^{K}L(\lambda|D_{0k})^{(\sum_{i=1}^{k}\gamma_i)}d\lambda }.
Here \pi_0(\gamma) and \pi_0(\lambda) are the initial prior distributions of \gamma and \lambda, respectively. L(\lambda|D_{0k}) is the likelihood function of historical data D_{0k}, and \sum_{i=1}^{k}\gamma_i is the corresponding power parameter.
A list of class "NPP" with three elements:
| acceptrate | the acceptance rate in MCMC sampling for  | 
| lambda | posterior of the model parameter  | 
| delta | posterior of the power parameter  | 
Qiang Zhang zqzjf0408@163.com
Ibrahim, J.G., Chen, M.-H., Gwon, Y. and Chen, F. (2015). The Power Prior: Theory and Applications. Statistics in Medicine 34:3724-3749.
Duan, Y., Ye, K. and Smith, E.P. (2006). Evaluating Water Quality: Using Power Priors to Incorporate Historical Information. Environmetrics 17:95-106.
PoiMNPP_MCMC1;
PoiMNPP_MCMC2;
PoiOMNPP_MCMC2
PoiOMNPP_MCMC1(n0=c(0,3,5),n=3,prior_gamma=c(1/2,1/2,1/2,1/2), prior_lambda=c(1,1/10),
               gamma_ind_prop=rep(1,4),gamma_ini=NULL, nsample = 2000, burnin = 500, thin = 2)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.