LMMNPP_MCMC1 | R Documentation |
Multiple historical data are incorporated together.
Conduct posterior sampling for Linear Regression Model with normalized power prior.
For the power parameter \delta
, a Metropolis-Hastings algorithm with either
independence proposal, or a random walk proposal on its logit scale is used.
For the model parameters (\beta, \sigma^2)
, Gibbs sampling is used.
LMMNPP_MCMC1(D0, X, Y, a0, b, mu0, R, delta_ini, prop_delta,
prior_delta_alpha, prior_delta_beta, prop_delta_alpha,
prop_delta_beta, rw_delta, nsample, burnin, thin)
D0 |
a list of |
X |
a vector or matrix or data frame of covariate observed in the current data. If more than 1 covariate available, the number of rows is equal to the number of observations. |
Y |
a vector of individual level of the response y in the current data. |
a0 |
a positive shape parameter for inverse-gamma prior on model parameter |
b |
a positive scale parameter for inverse-gamma prior on model parameter |
mu0 |
a vector of the mean for prior |
R |
a inverse matrix of the covariance matrix for prior |
delta_ini |
the initial value of |
prop_delta |
the class of proposal distribution for |
prior_delta_alpha |
a vector of the hyperparameter |
prior_delta_beta |
a vector of the hyperparameter |
prop_delta_alpha |
a vector of the hyperparameter |
prop_delta_beta |
a vector of the hyperparameter |
rw_delta |
the stepsize(variance of the normal distribution) for the random walk proposal of logit |
nsample |
specifies the number of posterior samples in the output. |
burnin |
the number of burn-ins. The output will only show MCMC samples after bunrin. |
thin |
the thinning parameter in MCMC sampling. |
The outputs include posteriors of the model parameters and power parameter,
acceptance rate in sampling \delta
.
Let \theta
=(\beta, \sigma^2)
, the normalized power prior distribution is
\frac{\pi_0(\delta)\pi_0(\theta)\prod_{k=1}^{K}L(\theta|D_{0k})^{\delta_k}}{\int \pi_0(\theta)\prod_{k=1}^{K}L(\theta|D_{0k})^{\delta_k}\,d\theta}.
Here \pi_0(\delta)
and \pi_0(\theta)
are the initial prior distributions of \delta
and \theta
, respectively. L(\theta|D_{0k})
is the likelihood function of historical data D_{0k}
, and \delta_k
is the corresponding power parameter.
A list of class "NPP" with four elements:
acceptrate |
the acceptance rate in MCMC sampling for |
beta |
posterior of the model parameter |
sigma |
posterior of the model parameter |
delta |
posterior of the power parameter |
Qiang Zhang zqzjf0408@163.com
Ibrahim, J.G., Chen, M.-H., Gwon, Y. and Chen, F. (2015). The Power Prior: Theory and Applications. Statistics in Medicine 34:3724-3749.
Duan, Y., Ye, K. and Smith, E.P. (2006). Evaluating Water Quality: Using Power Priors to Incorporate Historical Information. Environmetrics 17:95-106.
LMMNPP_MCMC2
;
LMOMNPP_MCMC1
;
LMOMNPP_MCMC2
## Not run:
set.seed(1234)
sigsq0 = 1
n01 = 100
theta01 = c(0, 1, 1)
X01 = cbind(1, rnorm(n01, mean=0, sd=1), runif(n01, min=-1, max=1))
Y01 = X01%*%as.vector(theta01) + rnorm(n01, mean=0, sd=sqrt(sigsq0))
D01 = cbind(X01, Y01)
n02 = 70
theta02 = c(0, 2, 3)
X02 = cbind(1, rnorm(n02, mean=0, sd=1), runif(n02, min=-1, max=1))
Y02 = X02%*%as.vector(theta02) + rnorm(n02, mean=0, sd=sqrt(sigsq0))
D02 = cbind(X02, Y02)
n03 = 50
theta03 = c(0, 3, 5)
X03 = cbind(1, rnorm(n03, mean=0, sd=1), runif(n03, min=-1, max=1))
Y03 = X03%*%as.vector(theta03) + rnorm(n03, mean=0, sd=sqrt(sigsq0))
D03 = cbind(X03, Y03)
D0 = list(D01, D02, D03)
n0 = c(n01, n02, n03)
n = 100
theta = c(0, 3, 5)
X = cbind(1, rnorm(n, mean=0, sd=1), runif(n, min=-1, max=1))
Y = X%*%as.vector(theta) + rnorm(n, mean=0, sd=sqrt(sigsq0))
LMMNPP_MCMC1(D0=D0, X=X, Y=Y, a0=2, b=2, mu0=c(0,0,0), R=diag(c(1/64,1/64,1/64)),
delta_ini=NULL, prior_delta_alpha=c(1,1,1), prior_delta_beta=c(1,1,1),
prop_delta_alpha=c(1,1,1), prop_delta_beta=c(1,1,1),
prop_delta="RW", rw_delta=0.9, nsample=5000, burnin=1000, thin=3)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.