Nothing
#' Community Eigenvector Centrality
#' @description Computes the \link[NetworkToolbox]{flow.frac} for each
#' community in the network. The values are equivalent to the community's
#' eigenvector centrality
#'
#' @param A An adjacency matrix
#'
#' @param comm A vector or matrix corresponding to the
#' community each node belongs to
#'
#' @param weighted Is the network weighted?
#' Defaults to \code{TRUE}.
#' Set to \code{FALSE} for weighted measures
#'
#' @return A vector of community eigenvector centrality values for
#' each specified community in the network
#' (larger values suggest more central positioning)
#'
#' @examples
#' # Pearson's correlation only for CRAN checks
#' A <- TMFG(neoOpen, normal = FALSE)$A
#'
#' comm <- igraph::walktrap.community(convert2igraph(abs(A)))$membership
#'
#' result <- comm.eigen(A, comm)
#'
#' @references
#' Giscard, P. L., & Wilson, R. C. (2018).
#' A centrality measure for cycles and subgraphs II.
#' \emph{Applied Network Science}, \emph{3}, 9.
#'
#' @author Alexander Christensen <alexpaulchristensen@gmail.com>
#'
#' @export
#Community EC
comm.eigen <- function (A, comm, weighted = TRUE)
{
if(is.null(comm))
{stop("comm must be input")}
comm <- as.vector(comm)
if(ncol(A)!=length(comm))
{stop("length of comm does not match nodes in matrix")}
uniq <- unique(comm)
uniq <- uniq[order(uniq)]
len <- length(uniq)
commEC <- vector("numeric",length=len)
if(!weighted)
{A <- binarize(A)}
for(i in 1:len)
{commEC[i] <- flow.frac(A, which(comm==uniq[i]))}
names(commEC) <- uniq
return(commEC)
}
#----
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.