Nothing
#' Generates a Lattice Network
#' @description Generates a lattice network
#'
#' @param nodes Number of nodes in lattice network
#'
#' @param edges Number of edges in lattice network
#'
#' @return Returns an adjacency matrix of a lattice network
#'
#' @examples
#' latt <- lattnet(10, 27)
#'
#' @references
#' Rubinov, M., & Sporns, O. (2010).
#' Complex network measures of brain connectivity: Uses and interpretations.
#' \emph{NeuroImage}, \emph{52}, 1059-1069.
#'
#' @author Alexander Christensen <alexpaulchristensen@gmail.com>
#'
#' @export
#Lattice Network----
#Updated 12.05.2021
lattnet <- function (nodes, edges)
{
dlat<-matrix(0,nrow=nodes,ncol=nodes)
lat<-matrix(0,nrow=nodes,ncol=nodes)
balance <- sum(lat) - edges
count <- 0
while(sign(balance) == -1){
if(count == 0){
for(i in 1:nodes){
if(i != nodes){
dlat[i, (i + 1)] <- 1
}
}
}else{
for(i in 1:nodes){
if(i < (nodes - count)){
dlat[i, (i + (count + 1))] <- 1
}
}
}
count <- count + 1
balance <- sum(dlat) - edges
}
over <- sum(dlat) - edges
if(over != 0){
rp <- sample(which(dlat==1), over, replace = FALSE)
dlat[rp] <- 0
}
lat <- dlat + t(dlat)
return(lat)
}
#----
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.