Nothing
#' Root Mean Square Error
#' @description Computes the root mean square error (RMSE) of a sparse model to a full model
#'
#' @param base Base (or full) model to be evaluated against
#'
#' @param test Reduced (or testing) model (e.g., a sparse correlation or covariance matrix)
#'
#' @return RMSE value (lower values suggest more similarity between the full and sparse model)
#'
#' @examples
#' A1 <- solve(cov(neoOpen))
#'
#' \dontrun{
#' A2 <- LoGo(neoOpen)
#'
#' root <- rmse(A1, A2)
#' }
#'
#' @author Alexander Christensen <alexpaulchristensen@gmail.com>
#'
#' @export
#Root Mean Square Error----
rmse <- function (base, test)
{
base <- as.vector(base)
test <- as.vector(test)
error <- base - test
root <- sqrt(mean(error^2))
return(root)
}
#----
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.