The model that will be trained is a r attr(modelSettings$param,'settings')$name
that uses the PatientLevelPrediction
function r modelSettings$fitFunction
to fit the model.
if(modelSettings$fitFunction == "fitCyclopsModel"){ parameters <- data.frame( name = names(modelSettings$param), value = unlist( lapply(modelSettings$param, function(x) paste(names(x), x, collapse = '-', sep=':')) ) ) settings <- data.frame( name = names(attr(modelSettings$param,"settings")), value = unlist( lapply( attr(modelSettings$param,"settings"), function(x) paste0(names(x), x, collapse = ':', sep=' ') ) ) ) row.names(settings) <- NULL } else{ parameters <- do.call('rbind', lapply( modelSettings$param, function(x){ unlist(lapply(x, function(x) paste0(x, sep=' ', collapse=':'))) }) ) settings <- data.frame( name = names(attr(modelSettings$param,"settings")), value = unlist( lapply( attr(modelSettings$param,"settings"), function(x) paste0(names(x), x, collapse = '-', sep='') ) ) ) row.names(settings) <- NULL }
Cross-validation settings
The cross validation settings are to use r splitSettings$nfold
folds in the training data that are partitioned using the r attr(splitSettings,"fun")
function and consist of r splitSettings$train*100
\% of the complete data. The seed used for splitting the data is r splitSettings$seed
.
Hyper-parameter search
The hyper-parameters investigated while fitting the model are listed below. The combination of hyper-parameters that obtains the highest AUROC value in the training data via cross validation will be uses in the final model.
print(knitr::kable(x = parameters, caption = paste('Hyper-parameters combinations searched to fit the model')))
Other settings
The other settings used to fit the model, such as seeds used for reproducibility, are:
print(knitr::kable(x = settings, caption = paste('Other model fitting settings')))
Internal validation
The model will be assessed internally using a test set that consists of r splitSettings$test*100
\% of the complete data.
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.