Nothing
#' @name grouped_tv_plm
#' @param object of class \code{tv_gplm}.
#' @method summary tv_gplm
#' @export
summary.tv_gplm <- function(object, ...) {
tmp <- object[c("call", "residuals", "coefficients", "groups", "IC", "args", "model")]
k_tv <- ncol(tmp$coefficients$tv) * (tmp$args$d + tmp$args$M + 1)
k_const <- ifelse(is.null(ncol(tmp$coefficients$const)), 0, ncol(tmp$coefficients$const))
k <- k_tv + k_const
N <- length(unique(object$args$labs$i))
i_index <- as.numeric(factor(object$args$labs$i))
measures_vec <- fitMeasures(N = N, k = k, y = object$model[[1]], i_index = i_index, method = "PLS", msr = tmp$IC$msr)
out <- c(tmp, r.df = round(measures_vec[1]), r.squared = measures_vec[2], adj.r.squared = measures_vec[3], r.se = measures_vec[4], msr = tmp$IC$msr)
class(out) <- "summary.tv_gplm"
return(out)
}
#' @name grouped_tv_plm
#' @param x of class \code{tv_gplm}.
#' @method formula tv_gplm
#' @export
formula.tv_gplm <- function(x, ...) {
x$args$formula
}
#' @name grouped_tv_plm
#' @param object of class \code{tv_gplm}.
#' @method df.residual tv_gplm
#' @export
df.residual.tv_gplm <- function(object, ...) {
M <- object$args$M + object$args$d + 1
df_fe <- length(unique(object$args$labs$i))
p <- max(ncol(object$coefficients$tv), 0)
p_const <- max(ncol(object$coefficients$const), 0)
length(object$args$labs$t) - df_fe - (p * M + p_const) * object$groups$n_groups
}
#' @name grouped_tv_plm
#' @param x of class \code{tv_gplm}.
#' @method print tv_gplm
#' @export
print.tv_gplm <- function(x, ...) {
cat(paste("Groups:", x$groups$n_groups), "\n")
cat("\nCall:\n")
print(x$call)
}
#' @export
print.summary.tv_gplm <- function(x, ...) {
cat("Call:\n")
print(x$call)
unique_i <- unique(x$args$labs$i)
N <- length(unique_i)
n_periods <- length(unique(x$args$labs$t))
lab_mat <- cbind(i = x$args$labs$i, t = x$args$labs$t)
min_max_t <- stats::quantile(sapply(unique_i, function(i) length(lab_mat[lab_mat[, 1] == i, 2])), probs = c(0, 1))
if (min_max_t[1] == min_max_t[2]) {
balanced <- "Balanced"
t_range <- min_max_t[2]
} else {
balanced <- "Unbalanced"
t_range <- paste0(min_max_t, collapse = "-")
}
cat(paste0("\n", balanced, " panel: N = ", N, ", T = ", t_range, ", obs = ", length(x$residuals), "\n"))
cat("\nInformation criterion: ")
cat(round(c(x$IC$IC), 5), "\n")
cat("\nResiduals:\n")
resid_vec <- x$residuals
quantile_vec <- round(stats::quantile(resid_vec, probs = c(0, .25, .5, .75, 1)), 5)
names(quantile_vec) <- c("Min", "1Q", "Median", "3Q", "Max")
print(quantile_vec)
if (x$groups$n_groups > 1) {
cat(paste0("\n", x$groups$n_groups), "groups:\n")
print(x$groups$groups)
} else {
cat("\n1 group\n")
}
if (!is.null(x$coefficients$const)) {
cat("\nConstant coefficients:\n ")
print(round(x$coefficients$const, 5))
}
cat("\nResidual standard error:", round(x$r.se, 5), "on", x$r.df, "degrees of freedom\n")
cat("Mean squared error:", round(x$IC$msr, 5))
cat("\nMultiple R-squared:", paste0(round(x$r.squared, 5), ","), "Adjusted R-squared:", round(x$adj.r.squared, 5), "\n")
# Plot of the functional coefficient
p <- dim(x$coefficients$tv)[2]
var_names <- colnames(x$coefficients$tv)
if (is.null(var_names)) var_names <- paste0("X", 1:p)
n_periods <- dim(x$coefficients$tv)[1]
group_names <- factor(as.numeric(gsub("Group\\s+", "", unlist(dimnames(x$coefficients$tv)[3]))))
coef_df <- data.frame(
coef = c(x$coefficients$tv),
var_name = rep(rep(var_names, each = n_periods), x$groups$n_groups),
index = rep(1:n_periods, x$groups$n_groups * p),
Group = rep(group_names, each = p * n_periods)
)
legend_position <- ifelse(x$groups$n_groups <= 10, "bottom", "none")
coef_plot <- gen_coef_plot_tvpagfl(coef_df, legend_position)
print(coef_plot)
}
#' @name grouped_tv_plm
#' @param object of class \code{tv_gplm}.
#' @method coef tv_gplm
#' @export
coef.tv_gplm <- function(object, ...) {
tv <- object$coefficients$tv
if (!is.null(object$coefficients$const)) {
const <- object$coefficients$const
tmp <- array(NA, dim = dim(tv) + c(0, ncol(const), 0))
tmp[, 1:dim(tv)[2], ] <- tv
const_array <- array(rep(c(t(const)), each = dim(tv)[1]), dim = c(dim(tv)[1], ncol(const), dim(tv)[3]))
tmp[, (dim(tv)[2] + 1):(dim(tv)[2] + ncol(const)), ] <- const_array
out <- tmp[, , object$groups$groups]
dimnames(out) <- list(dimnames(tv)[[1]], c(dimnames(tv)[[2]], colnames(const)), names(object$groups$groups))
} else {
out <- tv[, , object$groups$groups]
if (is.matrix(out)) out <- array(c(out), dim = c(nrow(out), 1, ncol(out)))
dimnames(out) <- list(dimnames(tv)[[1]], dimnames(tv)[[2]], names(object$groups$groups))
}
return(out)
}
#' @name grouped_tv_plm
#' @param object of class \code{tv_gplm}.
#' @method residuals tv_gplm
#' @export
residuals.tv_gplm <- function(object, ...) {
resid_vec <- object$residuals
i_index <- object$args$labs$i
t_index <- object$args$labs$t
resid_df <- data.frame(
residuals = resid_vec,
i_index = i_index,
t_index = t_index
)
colnames(resid_df)[-1] <- object$args$labs$index
return(resid_df)
}
#' @name grouped_tv_plm
#' @param object of class \code{tv_gplm}.
#' @method fitted tv_gplm
#' @export
fitted.tv_gplm <- function(object, ...) {
fitted_vec <- object$fitted
i_index <- object$args$labs$i
t_index <- object$args$labs$t
fitted_df <- data.frame(
fit = fitted_vec,
i_index = i_index,
t_index = t_index
)
plot_df <- fitted_df
colnames(fitted_df)[-1] <- object$args$labs$index
# Plot the fit if feasible
if (length(unique(i_index)) <= 20) {
if (!is.numeric(t_index)) {
suppressWarnings(t_index <- as.numeric(t_index))
if (all(is.na(t_index))) t_index <- as.integer(factor(object$args$labs$t))
plot_df$t_index <- t_index
}
plot_df$i_index <- as.character(plot_df$i_index)
plot_df$y <- object$model[[1]]
plot_df <- plot_df[order(plot_df$i_index), ]
y_name <- colnames(object$model)[1]
col_map <- c("red", "black")
names(col_map) <- c("fit", y_name)
fit_plot <- gen_fit_plot_tvpagfl(plot_df, y_name, col_map)
print(fit_plot)
}
return(fitted_df)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.