Nothing
# PK MODELS
test_that("Linear1InfusionSingleDose_kV", {
modelFromLibrary = list("PKModel" = "Linear1BolusSingleDose_kV")
# model modelParameters
modelParameters = list(
ModelParameter( name = "k", distribution = LogNormal( mu = 0.25, omega = sqrt(0.25) ) ),
ModelParameter( name = "V", distribution = LogNormal( mu = 15, omega = sqrt(0.1) ) ) )
# Error Model
errorModelRespPK = Combined1( output = "RespPK", sigmaInter = 0.5, sigmaSlope = 0.15 )
modelError = list( errorModelRespPK )
# administration
administration = Administration( outcome = "RespPK", timeDose = c( 0 ), dose = c( 100 ) )
# sampling times
samplingTimes = SamplingTimes( outcome = "RespPK", samplings = c( 0.33, 1.5, 5, 12 ) )
# arm
arm1 = Arm( name = "BrasTest", size = 200, administrations = list( administration ) , samplingTimes = list( samplingTimes ) )
# design
design1 = Design( name = "design1", arms = list( arm1 ) )
# Evaluation
evaluationFIM = Evaluation( name = "Linear1BolusSingleDose_kV",
modelFromLibrary = modelFromLibrary,
modelParameters = modelParameters,
modelError = modelError,
outputs = list( "RespPK" ),
designs = list( design1 ),
fimType = "population",
odeSolverParameters = list( atol = 1e-8, rtol = 1e-8 ) )
evaluationFIM = run( evaluationFIM )
FisherMatrix = getFisherMatrix(evaluationFIM )
detPopulationFim =det( FisherMatrix$fisherMatrix )
valueDetPopulationFim = 1456484950098966784
tol = 1e-6
expect_equal(detPopulationFim,valueDetPopulationFim, tolerance = tol)
})
############################################################################################################################
test_that("Linear1BolusSingleDose_ClV", {
modelFromLibrary = list("PKModel" = "Linear1BolusSingleDose_ClV")
# model modelParameters
modelParameters = list( ModelParameter( name = "Cl", distribution = LogNormal( mu = 3.75, omega = sqrt(0.25) ) ),
ModelParameter( name = "V", distribution = LogNormal( mu = 15, omega = sqrt(0.1) ) ) )
# Error Model
errorModelRespPK = Combined1( output = "RespPK", sigmaInter = 0.5, sigmaSlope = 0.15 )
modelError = list( errorModelRespPK )
# administration
administration = Administration( outcome = "RespPK", timeDose = c( 0 ), dose = c( 100 ) )
# sampling times
samplingTimes = SamplingTimes( outcome = "RespPK", samplings = c( 0.33, 1.5, 5, 12 ) )
# arm
arm1 = Arm( name = "BrasTest",
size = 200,
administrations = list( administration ) ,
samplingTimes = list( samplingTimes ) )
# design
design1 = Design( name = "design1",
arms = list( arm1 ) )
# --------------------------------------
# Evaluation
# Evaluate the Fisher Information Matrix for the PopulationFIM
evaluationFIM = Evaluation( name = "Linear1BolusSingleDose_ClV",
modelFromLibrary = modelFromLibrary,
modelParameters = modelParameters,
modelError = modelError,
outputs = list( "RespPK" ),
designs = list( design1 ),
fimType = "population",
odeSolverParameters = list( atol = 1e-8, rtol = 1e-8 ) )
evaluationFIM = run( evaluationFIM )
FisherMatrix = getFisherMatrix(evaluationFIM )
detPopulationFim =det( FisherMatrix$fisherMatrix )
valueDetPopulationFim = 7292815928272215
tol = 1e-6
expect_equal(detPopulationFim,valueDetPopulationFim, tolerance = )
})
test_that("Linear1InfusionSingleDose_kV", {
# --------------------------------------
# model definition
modelFromLibrary = list("PKModel" = "Linear1InfusionSingleDose_kV")
# model modelParameters
modelParameters = list(
ModelParameter( name = "V", distribution = LogNormal( mu = 3.5, omega = sqrt(0.09) ) ),
ModelParameter( name = "k", distribution = LogNormal( mu = 0.6, omega = sqrt(0.09) ) )
)
# Error Model
errorModelRespPK = Combined1( output = "RespPK", sigmaInter = 0.1, sigmaSlope = 0.1 )
modelError = list( errorModelRespPK )
# administration
administration = Administration( outcome = "RespPK", Tinf = c(2), timeDose = c( 0 ), dose = c( 30 ) )
# sampling times
samplingTimes = SamplingTimes( outcome = "RespPK", samplings = c( 0.5, 1, 4, 8 ) )
# arm
arm1 = Arm( name = "BrasTest",
size = 40,
administrations = list( administration ) ,
samplingTimes = list( samplingTimes )
)
# design
design1 = Design( name = "design1",
arms = list( arm1 ) )
# --------------------------------------
# Evaluation
# Evaluate the Fisher Information Matrix for the PopulationFIM
evaluationFIM = Evaluation( name = "Linear1InfusionSingleDose_kV",
modelFromLibrary = modelFromLibrary,
modelParameters = modelParameters,
modelError = modelError,
outputs = list( "RespPK" ),
designs = list( design1 ),
fimType = "population",
odeSolverParameters = list( atol = 1e-8, rtol = 1e-8 ) )
evaluationFIM = run( evaluationFIM )
FisherMatrix = getFisherMatrix(evaluationFIM )
detPopulationFim =det( FisherMatrix$fisherMatrix )
detPopulationFim
valueDetPopulationFim = 1976729482139640576.0
tol = 1e-6
expect_equal(detPopulationFim,valueDetPopulationFim, tolerance = tol )
})
test_that("Model PK 1cpt : Linear1InfusionSingleDose_VCl", {
# --------------------------------------
# model definition
# model equations
modelFromLibrary = list("PKModel" = "Linear1InfusionSingleDose_ClV") #Linear1InfusionSingleDose_VCl
# model modelParameters
modelParameters = list(
ModelParameter( name = "V", distribution = LogNormal( mu = 3.5, omega = sqrt(0.09) ) ),
ModelParameter( name = "Cl", distribution = LogNormal( mu = 2, omega = sqrt(0.09) ) )
)
# Error Model
errorModelRespPK = Combined1( output = "RespPK", sigmaInter = 0.1, sigmaSlope = 0.1 )
modelError = list( errorModelRespPK )
# administration
administration = Administration( outcome = "RespPK",
Tinf = c(2),
timeDose = c( 0 ),
dose = c( 30 ) )
# sampling times
samplingTimes = SamplingTimes( outcome = "RespPK", samplings = c( 0.5, 1, 4, 8 ) )
# arm
arm1 = Arm( name = "BrasTest",
size = 40,
administrations = list( administration ) ,
samplingTimes = list( samplingTimes )
)
# design
design1 = Design( name = "design1",
arms = list( arm1 ) )
# --------------------------------------
# Evaluation
# Evaluate the Fisher Information Matrix for the PopulationFIM
evaluationFIM = Evaluation( name = "Linear1InfusionSingleDose_ClV",
modelFromLibrary = modelFromLibrary,
modelParameters = modelParameters,
modelError = modelError,
outputs = list( "RespPK" ),
designs = list( design1 ),
fimType = "population",
odeSolverParameters = list( atol = 1e-8, rtol = 1e-8 ) )
evaluationFIM = run( evaluationFIM )
FisherMatrix = getFisherMatrix(evaluationFIM )
detPopulationFim =det( FisherMatrix$fisherMatrix )
detPopulationFim
valueDetPopulationFim = 155857928552697888.0
tol = 1e-6
expect_equal( detPopulationFim, valueDetPopulationFim, tolerance = tol )
})
test_that("Model PK 1cpt : Linear1FirstOrderSingleDose_kakV", {
## --------------------------------------
# model definition
# model equations
modelFromLibrary = list( "PKModel" = "Linear1FirstOrderSingleDose_kakV" )
# model modelParameters
modelParameters = list(
ModelParameter( name = "ka", distribution = LogNormal( mu = 2, omega = sqrt(1) ) ),
ModelParameter( name = "k", distribution = LogNormal( mu = 0.25, omega = sqrt(0.25) ) ),
ModelParameter( name = "V", distribution = LogNormal( mu = 15, omega = sqrt(0.1) ) ) )
# Error Model
errorModelRespPK = Combined1( output = "RespPK", sigmaInter = 0.5, sigmaSlope = 0.15 )
modelError = list( errorModelRespPK )
# administration
administration = Administration( outcome = "RespPK",
timeDose = c( 0 ),
dose = c( 100 ) )
# sampling times
samplingTimes = SamplingTimes( outcome = "RespPK", samplings = c( 0.33, 1.5, 5, 12 ) )
# arm
arm1 = Arm( name = "BrasTest",
size = 200,
administrations = list( administration ) ,
samplingTimes = list( samplingTimes ) )
# design
design1 = Design( name = "design1",
arms = list( arm1 ) )
# --------------------------------------
# Evaluation
# Evaluate the Fisher Information Matrix for the PopulationFIM
evaluationFIM = Evaluation( name = "Linear1FirstOrderSingleDose_kakV",
modelFromLibrary = modelFromLibrary,
modelParameters = modelParameters,
modelError = modelError,
outputs = list( "RespPK" ),
designs = list( design1 ),
fimType = "population",
odeSolverParameters = list( atol = 1e-8, rtol = 1e-8 ) )
evaluationFIM = run( evaluationFIM )
FisherMatrix = getFisherMatrix(evaluationFIM )
detPopulationFim =det( FisherMatrix$fisherMatrix )
detPopulationFim
valueDetPopulationFim = 293039672275859603466.0
tol = 1e-6
expect_equal( detPopulationFim, valueDetPopulationFim, tolerance = tol )
})
test_that("Model PK 1cpt : Linear1FirstOrderSingleDose_kaClV", {
modelFromLibrary = list("PKModel" = "Linear1FirstOrderSingleDose_kaClV")
# model modelParameters
modelParameters = list(
ModelParameter( name = "V", distribution = LogNormal( mu = 8, omega = sqrt(0.020) ) ),
ModelParameter( name = "Cl", distribution = LogNormal( mu = 0.13, omega = sqrt(0.06) ) ),
ModelParameter( name = "ka", distribution = LogNormal( mu = 1.6, omega = sqrt(0.7) ) )
)
# Error Model
errorModelRespPK = Combined1( output = "RespPK", sigmaInter = 0.6, sigmaSlope = 0.07 )
modelError = list( errorModelRespPK )
# administration
administration = Administration( outcome = "RespPK", timeDose = c( 0 ), dose = c( 100 ) )
# sampling times
samplingTimes = SamplingTimes( outcome = "RespPK", samplings = c( 0.5, 1, 2, 6, 9, 12, 24, 36, 48, 72, 96, 120) )
# arm
arm1 = Arm( name = "BrasTest",
size = 32,
administrations = list( administration ) ,
samplingTimes = list( samplingTimes ) )
# design
design1 = Design( name = "design1", arms = list( arm1 ) )
# Evaluate the Fisher Information Matrix for the PopulationFIM
evaluationFIM = Evaluation( name = "Linear1FirstOrderSingleDose_kaClV",
modelFromLibrary = modelFromLibrary,
modelParameters = modelParameters,
modelError = modelError,
outputs = list( "RespPK" ),
designs = list( design1 ),
fimType = "population",
odeSolverParameters = list( atol = 1e-8, rtol = 1e-8 ) )
evaluationFIM = run( evaluationFIM )
FisherMatrix = getFisherMatrix(evaluationFIM )
detPopulationFim =det( FisherMatrix$fisherMatrix )
valueDetPopulationFim = 75038812388902169470420.0
# Evaluate the Fisher Information Matrix for the individual FIM
evaluationFIM = Evaluation( name = "Linear1FirstOrderSingleDose_kaClV",
modelFromLibrary = modelFromLibrary,
modelParameters = modelParameters,
modelError = modelError,
outputs = list( "RespPK" ),
designs = list( design1 ),
fimType = "individual",
odeSolverParameters = list( atol = 1e-8, rtol = 1e-8 ) )
evaluationFIM = run( evaluationFIM )
FisherMatrix = getFisherMatrix(evaluationFIM )
detIndividualFim =det( FisherMatrix$fisherMatrix )
valueDetIndividualFim = 1532105538
tol = 1e-6
expect_equal( detPopulationFim, valueDetPopulationFim, tolerance = tol )
expect_equal( detIndividualFim, valueDetIndividualFim, tolerance = tol )
})
# --------------------------------------
# model definition
# model equations
test_that("Model PK 1cpt : Linear1FirstOrderSingleDose_kaClV (BayesianFIM instead of PopulationFIM)", {
modelFromLibrary = list("PKModel" = "Linear1FirstOrderSingleDose_kaClV")
# model modelParameters
modelParameters = list(
ModelParameter( name = "V", distribution = LogNormal( mu = 8, omega = sqrt(0.020) ) ),
ModelParameter( name = "Cl", distribution = LogNormal( mu = 0.13, omega = sqrt(0.06) ) ),
ModelParameter( name = "ka", distribution = LogNormal( mu = 1.6, omega = sqrt(0.7) ) )
)
# Error Model
errorModelRespPK = Combined1( output = "RespPK", sigmaInter = 0.6, sigmaSlope = 0.07 )
modelError = list( errorModelRespPK )
# administration
administration = Administration( outcome = "RespPK",
timeDose = c( 0 ),
dose = c( 100 ) )
# sampling times
samplingTimes = SamplingTimes( outcome = "RespPK", samplings = c( 0.5, 1, 2, 6, 9, 12, 24, 36, 48, 72, 96, 120) )
# arm
arm1 = Arm( name = "BrasTest",
size = 32,
administrations = list( administration ) ,
samplingTimes = list( samplingTimes )
)
# design
design1 = Design( name = "design1",
arms = list( arm1 ) )
# --------------------------------------
# Evaluation
# Evaluate the Fisher Information Matrix for the PopulationFIM
evaluationFIM = Evaluation( name = "Linear1FirstOrderSingleDose_kaClV",
modelFromLibrary = modelFromLibrary,
modelParameters = modelParameters,
modelError = modelError,
outputs = list( "RespPK" ),
designs = list( design1 ),
fimType = "Bayesian",
odeSolverParameters = list( atol = 1e-8, rtol = 1e-8 ) )
evaluationFIM = run( evaluationFIM )
FisherMatrix = getFisherMatrix(evaluationFIM )
detBayesianFim =det( FisherMatrix$fisherMatrix )
valueDetBayesianFim = 7349326.937090975232422
tol = 1e-6
expect_equal(valueDetBayesianFim,detBayesianFim, tolerance = tol )
})
test_that("Model PK 1cpt : Linear1InfusionSingleDose_ClV", {
# --------------------------------------
# model definition
# model equations
modelFromLibrary = list("PKModel" = "Linear1InfusionSingleDose_ClV")
# model modelParameters
modelParameters = list(
ModelParameter( name = "V", distribution = LogNormal( mu = 3.5, omega = sqrt(0.09) ) ),
ModelParameter( name = "Cl", distribution = LogNormal( mu = 2, omega = sqrt(0.09) ) )
)
# Error Model
errorModelRespPK = Combined1( output = "RespPK", sigmaInter = 0.1, sigmaSlope = 0.1 )
modelError = list( errorModelRespPK )
# administration
administration = Administration( outcome = "RespPK",
Tinf=c(2),
tau=c(12),
dose = c( 30 ) )
# sampling times
samplingTimes = SamplingTimes( outcome = "RespPK", samplings = c( 0, 1,2,5,7,8, 10,12,14, 15, 16, 20, 21, 30 ) )
# arm
arm1 = Arm( name = "BrasTest",
size = 40,
administrations = list( administration ) ,
samplingTimes = list( samplingTimes )
)
# design
design1 = Design( name = "design1",
arms = list( arm1 ) )
# --------------------------------------
# Evaluation
# Evaluate the Fisher Information Matrix for the PopulationFIM
evaluationFIM = Evaluation( name = "Linear1InfusionSingleDose_ClV",
modelFromLibrary = modelFromLibrary,
modelParameters = modelParameters,
modelError = modelError,
outputs = list( "RespPK" ),
designs = list( design1 ),
fimType = "population",
odeSolverParameters = list( atol = 1e-8, rtol = 1e-8 ) )
evaluationFIM = run( evaluationFIM )
FisherMatrix = getFisherMatrix(evaluationFIM )
detPopulationFim =det( FisherMatrix$fisherMatrix )
valueDetPopulationFim = 15171420395090292736
tol = 1e-6
expect_equal(valueDetPopulationFim,detPopulationFim, tolerance = tol )
})
test_that("Model PK 1cpt : Linear1FirstOrderSingleDose_kaClV", {
modelFromLibrary = list("PKModel" = "Linear1FirstOrderSingleDose_kaClV")
# model modelParameters
modelParameters = list(
ModelParameter( name = "V", distribution = LogNormal( mu = 8, omega = sqrt(0.020) ) ),
ModelParameter( name = "Cl", distribution = LogNormal( mu = 0.13, omega = sqrt(0.06) ) ),
ModelParameter( name = "ka", distribution = LogNormal( mu = 1.6, omega = sqrt(0.7) ) )
)
# Error Model
errorModelRespPK = Combined1( output = "RespPK", sigmaInter = 0.6, sigmaSlope = 0.07 )
modelError = list( errorModelRespPK )
# administration
administration = Administration( outcome = "RespPK",
timeDose = c( 0, 80, 160 ),
dose = c( 100,100,100 ) )
# sampling times
samplingTimes = SamplingTimes( outcome = "RespPK", samplings = c( 0.5, 1, 2, 6, 12, 48, 72, 120, 165, 220 ) )
# arm
arm1 = Arm( name = "BrasTest",
size = 32,
administrations = list( administration ) ,
samplingTimes = list( samplingTimes )
)
# design
design1 = Design( name = "design1",
arms = list( arm1 ) )
# --------------------------------------
# Evaluation
# Evaluate the Fisher Information Matrix for the PopulationFIM
evaluationFIM = Evaluation( name = "Linear1FirstOrderSingleDose_kaClV",
modelFromLibrary = modelFromLibrary,
modelParameters = modelParameters,
modelError = modelError,
outputs = list( "RespPK" ),
designs = list( design1 ),
fimType = "population",
odeSolverParameters = list( atol = 1e-8, rtol = 1e-8 ) )
evaluationFIM = run( evaluationFIM )
FisherMatrix = getFisherMatrix(evaluationFIM )
detPopulationFim = det( FisherMatrix$fisherMatrix )
valueDetPopulationFim = 23048351728920705368024
# Evaluate the Fisher Information Matrix for the individual FIM
evaluationFIM = Evaluation( name = "Linear1FirstOrderSingleDose_kaClV",
modelFromLibrary = modelFromLibrary,
modelParameters = modelParameters,
modelError = modelError,
outputs = list( "RespPK" ),
designs = list( design1 ),
fimType = "individual",
odeSolverParameters = list( atol = 1e-8, rtol = 1e-8 ) )
evaluationFIM = run( evaluationFIM )
FisherMatrix = getFisherMatrix(evaluationFIM )
detIndividualFim =det( FisherMatrix$fisherMatrix )
valueDetIndividualFim = 618022401.4696867465973
tol = 1e-6
expect_equal( detPopulationFim, valueDetPopulationFim, tolerance = tol )
expect_equal( detIndividualFim, valueDetIndividualFim, tolerance = tol )
})
###################################################################################################################################
test_that("Model PK 2cpts : Linear2BolusSingleDose_ClQV1V2", {
# --------------------------------------
# model definition
# model equations
modelFromLibrary = list("PKModel" = "Linear2BolusSingleDose_ClQV1V2")
# model modelParameters
modelParameters = list(
ModelParameter( name = "Cl", distribution = LogNormal( mu = 0.4, omega = sqrt(0.2) ) ),
ModelParameter( name = "V1", distribution = LogNormal( mu = 10, omega = sqrt(0.1) ) ),
ModelParameter( name = "Q", distribution = LogNormal( mu = 2, omega = sqrt(0.05) ) ),
ModelParameter( name = "V2", distribution = LogNormal( mu = 50, omega = sqrt(0.4) ) )
)
# Error Model
errorModelRespPK = Combined1( output = "RespPK", sigmaInter = 0.6, sigmaSlope = 0.07 )
modelError = list( errorModelRespPK )
# administration
administration = Administration( outcome = "RespPK",
timeDose = c( 0 ),
dose = c( 100 ) )
# sampling times
samplingTimes = SamplingTimes( outcome = "RespPK", samplings = c( 0.5, 1, 2, 6, 9, 12, 24, 36, 48, 72, 96, 120) )
# arm
arm1 = Arm( name = "BrasTest",
size = 32,
administrations = list( administration ) ,
samplingTimes = list( samplingTimes )
)
# design
design1 = Design( name = "design1",
arms = list( arm1 ) )
# --------------------------------------
# Evaluation
# Evaluate the Fisher Information Matrix for the PopulationFIM
evaluationFIM = Evaluation( name = "Linear2BolusSingleDose_ClQV1V2",
modelFromLibrary = modelFromLibrary,
modelParameters = modelParameters,
modelError = modelError,
outputs = list( "RespPK" ),
designs = list( design1 ),
fimType = "population",
odeSolverParameters = list( atol = 1e-8, rtol = 1e-8 ) )
evaluationFIM = run( evaluationFIM )
FisherMatrix = getFisherMatrix(evaluationFIM )
detPopulationFim =det( FisherMatrix$fisherMatrix )
valueDetPopulationFim = 45852890814.07175445557
tol = 1e-6
expect_equal(detPopulationFim,valueDetPopulationFim, tolerance = tol )
})
###################################################################################################################################
test_that("Model PK 2cpts : Linear2BolusSingleDose_kk12k21V", {
# --------------------------------------
# model definition
# model equations
modelFromLibrary = list("PKModel" = "Linear2BolusSingleDose_kk12k21V")
# model modelParameters
modelParameters = list(
ModelParameter( name = "k", distribution = LogNormal( mu = 0.25, omega = sqrt(0.25) ) ),
ModelParameter( name = "V", distribution = LogNormal( mu = 15.00, omega = sqrt(0.10) ) ),
ModelParameter( name = "k12", distribution = LogNormal( mu = 1.00, omega = sqrt(0.40) ) ),
ModelParameter( name = "k21", distribution = LogNormal( mu = 0.80, omega = sqrt(0.30) ) )
)
# Error Model
errorModelRespPK = Combined1( output = "RespPK", sigmaInter = 0.5, sigmaSlope = 0.15 )
modelError = list( errorModelRespPK )
# administration
administration = Administration( outcome = "RespPK",
timeDose = c( 0 ),
dose = c( 100 ) )
# sampling times
samplingTimes = SamplingTimes( outcome = "RespPK",
samplings = c(0.33, 1.5, 3, 5, 8, 12 ) )
# arm
arm1 = Arm( name = "BrasTest",
size = 200,
administrations = list( administration ) ,
samplingTimes = list( samplingTimes )
)
# design
design1 = Design( name = "design1",
arms = list( arm1 ) )
# --------------------------------------
# Evaluation
# Evaluate the Fisher Information Matrix for the PopulationFIM
evaluationFIM = Evaluation( name = "Linear2BolusSingleDose_kk12k21V",
modelFromLibrary = modelFromLibrary,
modelParameters = modelParameters,
modelError = modelError,
outputs = list( "RespPK"),
designs = list( design1 ),
fimType = "population",
odeSolverParameters = list( atol = 1e-8, rtol = 1e-8 ) )
evaluationFIM = run( evaluationFIM )
FisherMatrix = getFisherMatrix(evaluationFIM )
detPopulationFim =det( FisherMatrix$fisherMatrix )
detPopulationFim
valueDetPopulationFim = 1733176644421398016.0
tol = 1e-6
expect_equal(detPopulationFim,valueDetPopulationFim, tolerance = tol )
})
###################################################################################################################################
test_that("Model PK 1cpt : MichaelisMenten1FirstOrderSingleDose_kaVmKmV", {
# --------------------------------------
# model definition
# model equations
modelFromLibrary = list("PKModel" = "MichaelisMenten1FirstOrderSingleDose_kaVmKmV")
# model modelParameters
modelParameters = list(
ModelParameter( name = "ka", distribution = LogNormal( mu = 1.0, omega = sqrt(0.20) ) ),
ModelParameter( name = "V", distribution = LogNormal( mu = 15.00, omega = sqrt(0.25) ) ),
ModelParameter( name = "Vm", distribution = LogNormal( mu = 0.08, omega = sqrt(0.10) ) ),
ModelParameter( name = "Km", distribution = LogNormal( mu = 0.40, omega = sqrt(0.30) ) ) )
# Error Model
errorModelRespPK = Combined1( output = "RespPK", sigmaInter = 0.5, sigmaSlope = 0.15 )
modelError = list( errorModelRespPK )
# administration
administration = Administration( outcome = "RespPK",
timeDose = c( 0 ),
dose = c( 100 ) )
# sampling times
samplingTimes = SamplingTimes( outcome = "RespPK",
samplings = c( 0, 0.33, 1.5, 3, 5, 8, 11, 12 ) )
# arm
arm1 = Arm( name = "BrasTest",
size = 200,
administrations = list( administration ) ,
samplingTimes = list( samplingTimes ) ,
initialCondition = list( "C1" = 0 ) )
# design
design1 = Design( name = "design1",
arms = list( arm1 ) )
# --------------------------------------
# Evaluation
# Evaluate the Fisher Information Matrix for the PopulationFIM
evaluationFIM = Evaluation( name = "MichaelisMenten1FirstOrderSingleDose_kaVmKmV",
modelFromLibrary = modelFromLibrary,
modelParameters = modelParameters,
modelError = modelError,
outputs = list( "RespPK" = "C1" ),
designs = list( design1 ),
fimType = "population",
odeSolverParameters = list( atol = 1e-8, rtol = 1e-8 ) )
evaluationFIM = run( evaluationFIM )
FisherMatrix = getFisherMatrix(evaluationFIM )
detPopulationFim =det( FisherMatrix$fisherMatrix )
detPopulationFim
valueDetPopulationFim = 592523761240
tol = 1e-6
expect_equal(detPopulationFim,valueDetPopulationFim, tolerance = tol )
})
test_that("Model PK 1cpt : MichaelisMenten1BolusSingleDose_VmKm", {
# model equations
modelFromLibrary = list("PKModel" = "MichaelisMenten1BolusSingleDose_VmKm")
# model modelParameters
modelParameters = list(
ModelParameter( name = "Vm", distribution = LogNormal( mu = 0.08, omega = sqrt(0.10) ) ),
ModelParameter( name = "Km", distribution = LogNormal( mu = 0.40, omega = sqrt(0.30) ) )
)
# Error Model
errorModelRespPK = Combined1( output = "RespPK", sigmaInter = 0.5, sigmaSlope = 0.15 )
modelError = list( errorModelRespPK )
# administration
administration = Administration( outcome = "C1", timeDose = c( 0 ), dose = c( 100 ) )
# sampling times
samplingTimes = SamplingTimes( outcome = "C1",
samplings = c( 0, 0.5, 1, 2, 6, 9, 12, 24, 36, 48, 72, 96, 120 ) )
# arm
arm1 = Arm( name = "BrasTest",
size = 200,
administrations = list( administration ) ,
samplingTimes = list( samplingTimes ) ,
initialCondition = list( "C1" = 0 ) )
# design
design1 = Design( name = "design1",
arms = list( arm1 ) )
# --------------------------------------
# Evaluation
# Evaluate the Fisher Information Matrix for the PopulationFIM
evaluationFIM = Evaluation( name = "MichaelisMenten1BolusSingleDose_VmKm",
modelFromLibrary = modelFromLibrary,
modelParameters = modelParameters,
modelError = modelError,
outputs = list( "RespPK" = "C1" ),
designs = list( design1 ),
fimType = "population",
odeSolverParameters = list( atol = 1e-8, rtol = 1e-8 ) )
evaluationFIM = run( evaluationFIM )
FisherMatrix = getFisherMatrix(evaluationFIM )
detPopulationFim =det( FisherMatrix$fisherMatrix )
valueDetPopulationFim = 0.015545625761308865323
tol = 1e-6
expect_equal( detPopulationFim, valueDetPopulationFim, tolerance = tol )
})
###################################################################################################################################
test_that("Model PK 1cpt : Linear1FirstOrderSingleDose_kaClV", {
modelFromLibrary = list("PKModel" = "Linear1FirstOrderSingleDose_kaClV")
modelParameters = list(
ModelParameter( name = "V", distribution = LogNormal( mu = 63.000, omega = 0 ) ),
ModelParameter( name = "Cl", distribution = LogNormal( mu = 0.513, omega = 0 ) ),
ModelParameter( name = "ka", distribution = LogNormal( mu = 1.050, omega = sqrt(0.1) ) )
)
errorModelRespPK = Combined1( output = "RespPK", sigmaInter = 0, sigmaSlope = 0.0676 )
modelError = list( errorModelRespPK )
administration = Administration( outcome = "RespPK", timeDose = c( 0 ), dose = c( 5500 ) )
# sampling times
samplingTimes = SamplingTimes( outcome = "RespPK", samplings = c( 0.01, 1, 3, 5, 7, 10, 13, 17, 24 ) )
# arm
arm1 = Arm( name = "BrasTest",
size = 25,
administrations = list( administration ) ,
samplingTimes = list( samplingTimes )
)
# design
design1 = Design( name = "design1",
arms = list( arm1 ) )
# --------------------------------------
# Evaluation
# Evaluate the Fisher Information Matrix for the PopulationFIM
evaluationFIM = Evaluation( name = "Linear1FirstOrderSingleDose_kaClV",
modelFromLibrary = modelFromLibrary,
modelParameters = modelParameters,
modelError = modelError,
outputs = list( "RespPK" ),
designs = list( design1 ),
fimType = "population",
odeSolverParameters = list( atol = 1e-8, rtol = 1e-8 ) )
evaluationFIM = run( evaluationFIM )
FisherMatrix = getFisherMatrix(evaluationFIM )
detPopulationFim =det( FisherMatrix$fisherMatrix )
detPopulationFim
valueDetPopulationFim = 88354126194397.8
tol = 1e-6
expect_equal(detPopulationFim,valueDetPopulationFim, tolerance = tol )
})
###################################################################################################################################
test_that("Model PK 1cpt : Linear1FirstOrderSingleDose_kaClV", {
# --------------------------------------
# model definition
# model equations
modelFromLibrary = list("PKModel" = "Linear1FirstOrderSingleDose_kaClV")
# model modelParameters
modelParameters = list(
ModelParameter( name = "V", distribution = LogNormal( mu = 3.5, omega = sqrt( 0.09 ) ) ),
ModelParameter( name = "Cl", distribution = LogNormal( mu = 2.0, omega = sqrt( 0.09 ) ) ),
ModelParameter( name = "ka", distribution = LogNormal( mu = 1.0, omega = sqrt(0.09) ) )
)
# Error Model
errorModelRespPK = Combined1( output = "RespPK", sigmaInter = 0.1, sigmaSlope = 0.1 )
modelError = list( errorModelRespPK )
# administration
administration = Administration( outcome = "RespPK",
timeDose = c( 0,12,24,36,48 ),
dose = c( 30,30,30,30,30 ) )
# sampling times
samplingTimes = SamplingTimes( outcome = "RespPK", samplings = c( 0.5, 1, 4, 8, 12.5, 13, 16, 20, 24.5, 25, 28, 32, 36.5, 37, 40, 44, 48.5, 49, 52, 56 ) )
# arm
arm1 = Arm( name = "BrasTest",
size = 40,
administrations = list( administration ) ,
samplingTimes = list( samplingTimes )
)
# design
design1 = Design( name = "design1",
arms = list( arm1 ) )
# --------------------------------------
# Evaluation
# Evaluate the Fisher Information Matrix for the PopulationFIM
evaluationFIM = Evaluation( name = "Linear1FirstOrderSingleDose_kaClV",
modelFromLibrary = modelFromLibrary,
modelParameters = modelParameters,
modelError = modelError,
outputs = list( "RespPK" ),
designs = list( design1 ),
fimType = "population",
odeSolverParameters = list( atol = 1e-8, rtol = 1e-8 ) )
evaluationFIM = run( evaluationFIM )
# get the determinant of the Fisher matrix
FisherMatrix = getFisherMatrix(evaluationFIM )
detPopulationFim =det( FisherMatrix$fisherMatrix )
detPopulationFim
valueDetPopulationFim = 2835909452801529708800884.0
tol = 1e-6
expect_equal(detPopulationFim,valueDetPopulationFim, tolerance = tol )
})
###################################################################################################################################
test_that("Model PK 1cpt : Linear1FirstOrderSteadyState_kaClVtau", {
# --------------------------------------
# model definition
# model equations
modelFromLibrary = list("PKModel" = "Linear1FirstOrderSteadyState_kaClVtau")
# model modelParameters
modelParameters = list(
ModelParameter( name = "ka", distribution = LogNormal( mu = 1.050, omega = sqrt(0.1) ) ),
ModelParameter( name = "Cl", distribution = LogNormal( mu = 0.513, omega = 0 ) ),
ModelParameter( name = "V", distribution = LogNormal( mu = 63.000, omega = 0 ) )
)
# Error Model
errorModelRespPK = Combined1( output = "RespPK", sigmaInter = 0, sigmaSlope = 0.0676 )
modelError = list( errorModelRespPK )
# administration
administration = Administration( outcome = "RespPK",
tau = c(24),
dose = c( 5500 ) )
# sampling times
samplingTimes = SamplingTimes( outcome = "RespPK", samplings = c( 0.01, 1, 3, 5, 7, 10, 13, 17, 24 ) )
# arm
arm1 = Arm( name = "BrasTest",
size = 25,
administrations = list( administration ) ,
samplingTimes = list( samplingTimes )
)
# design
design1 = Design( name = "design1",
arms = list( arm1 ) )
# --------------------------------------
# Evaluation
# Evaluate the Fisher Information Matrix for the PopulationFIM
evaluationFIM = Evaluation( name = "Linear1FirstOrderSteadyState_kaClVtau",
modelFromLibrary = modelFromLibrary,
modelParameters = modelParameters,
modelError = modelError,
outputs = list( "RespPK" ),
designs = list( design1 ),
fimType = "population",
odeSolverParameters = list( atol = 1e-8, rtol = 1e-8 ) )
evaluationFIM = run( evaluationFIM )
# get the determinant of the Fisher matrix
FisherMatrix = getFisherMatrix(evaluationFIM )
detPopulationFim =det( FisherMatrix$fisherMatrix )
detPopulationFim
valueDetPopulationFim = 119307107145
tol = 1e-6
expect_equal(detPopulationFim,valueDetPopulationFim, tolerance = tol )
})
############################################################################################################################
# END CODE
############################################################################################################################
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.