Nothing
#' @title Non-Linear Pseudo-nth-Order Adsorption Kinetic Model
#' @description The Pseudo-nth Order Adsorption Kinetic Model is an empirical rate equation known to describe the kinetic analysis of neither order 1 nor 2 kinetic parameters. It will have a significant effect on the calculation of the rate constants as the rate constant is dependent on the order of reaction (Tseng, Wu, Wu, and Juang, 2014).
#' @param t the numerical value for contact time
#' @param qt the numerical value for the amount adsorbed at time t
#' @param qe the numerical value for the amount adsorbed at equilibrium. If this parameter is not defined, it will be estimated.
#' @import nls2
#' @import stats
#' @import ggplot2
#' @import Metrics
#' @return the non-linear regression and the parameter estimation for the Pseudo-nth-Order Model
#' @examples
#' \donttest{
#' t <- c(0,15,30,45,60,75,90,105,120)
#' qt <- c(0.000,3.718,3.888,4.102,4.274,4.402,4.444,4.488,4.616)
#' qe <- 4.8
#' pno(t,qt,qe)}
#' @author Jeff Ryan S. Magalong
#' @author Joshua Z. DelaCruz
#' @author Jeann M. Bumatay
#' @author Chester C. Deocaris
#' @references Ozer, A. (2007) <doi:10.1016/j.jhazmat.2006.07.040> Removal of Pb(II) ions from aqueous solutions by sulphuric acid-treated wheat bran. Journal of Hazardous Materials, 141(3), 753-761.
#' @references Tseng, R. L., Wu, P. H., Wu, F. C., &; Juang, R. S. (2014) <doi:10.1016/j.cej.2013.10.013> A convenient method to determine kinetic parameters of adsorption processes by nonlinear regression of pseudo-nth-order equation. Chemical Engineering Journal, 237, 153-161.
#' @export
pno <- function(t,qt,qe){
x <- t
y <- qt
dat <- data.frame(x,y)
n.dat <- nrow(na.omit(dat))
EQ1 <- function(x,y){
fxn <- y ~ qe*(1-(1/((1+((n-1)*kn*x*(qe^(n-1))))^(1/(n-1)))))
grd1 <- data.frame(qe = c(0,1000),
kn = c(0,10),
n = c(1,3))
cc<- capture.output(type="message",
fit3 <- try(nls2::nls2(fxn,
data = dat,
start = grd1,
algorithm = "plinear-random",
control = list(maxiter = 1000)),
silent=TRUE))
pars <- as.vector(coefficients(fit3))
pars_qe <- pars[1L]; pars_kn <- pars[2L]; pars_n <- pars[3L]; pars_lin <- pars[4L]
fun.1 <- function(x)(pars_qe*pars_lin*(1-(1/((1+((pars_n-1)*pars_kn*x*(pars_qe^(pars_n-1))))^(1/(pars_n-1))))))
r <- fun.1(1000)
qemin <- r*0.9 ;qemax <- r*1.1
knmin <- pars_kn*0.9 ;knmax <- pars_kn*1.1
nmin <- pars_n*0.9 ;nmax <- pars_n*1.1
grd2 <- data.frame(qe=c(qemin,qemax),
kn=c(knmin,knmax),
n =c(nmin,nmax))
fit3 <- nls2(fxn,
start = grd2,
algorithm = "grid-search",
control=list(maxiter=1000))
predval <- function(x,n.dat){
Col1 <- c(rep(" |",each = n.dat))
Col2 <- c(rep("|",each = n.dat))
pred.val <- predict(fit3)
time <- x
P.Table <- data.frame(Col1,time,Col1,pred.val,Col2)
colnames(P.Table) <- c(" |","Time "," |","Pred Val","|")
message("Estimated Values")
print(P.Table, right=T, row.names = F)
}
error <- function(y){
rmse <- rmse(y,predict(fit3))
mae <- mae(y,predict(fit3))
mse <- mse(y,predict(fit3))
rae <- rae(y,predict(fit3))
PAIC <- AIC(fit3)
PBIC <- BIC(fit3)
SE <- sqrt((sum((y-predict(fit3))^2))/(n.dat-2))
Col1 <- c(" |"," |"," |"," |"," |"," |"," |")
Col2 <- c("|","|","|","|","|","|","|")
E.P <- c("Relative Mean Square Error ", "Mean Absolute Error ","Mean Squared Error ","Relative Absolute Error ","Akaike Information Criterion ","Bayesian Information Criterion ","Standard Error Estimate ")
E.V <- c(rmse,mae,mse,rae,PAIC,PBIC,SE)
E.Table <- data.frame(Col1,E.P,Col1,E.V,Col2)
colnames(E.Table) <- c(" |","Error Parameters "," |","Error Values","|")
message("Error Estimation")
print(E.Table, right=F, row.names = F)
}
message("Pseudo nth Order")
print(summary(fit3))
predval(x,n.dat)
error(y)
parspno1 <- as.vector(coefficients(fit3))
pars_qe <- parspno1[1L]; pars_kn <- parspno1[2L]; pars_n <- parspno1[3L]
theme_set(theme_bw())
fun.1 <- function(x) (pars_qe*(1-(1/((1+((pars_n-1)*pars_kn*x*(pars_qe^(pars_n-1))))^(1/(pars_n-1))))))
plot <- ggplot(dat, aes(x=x,y=y))+
geom_function(color="red", fun=fun.1,size=1)+
geom_point()+
labs(subtitle="Plot of qt vs time with nonlinear Pseudo nth Order model",
y="qt",
x="time",
title="Pseudo nth Order Model",
caption="Created by PUPAK using ggplot2")
print(plot)
}
EQ2 <- function(x,y,qe){
qe <-qe
fxn <- y ~ qe*(1-(1/((1+((n-1)*kn*x*(qe^(n-1))))^(1/(n-1)))))
grd1 <- data.frame(kn = c(0,10),
n = c(1,3))
cc<- capture.output(type="message",
fit3 <- try(nls2::nls2(fxn,
data = dat,
start = grd1,
algorithm = "port",
control = list(maxiter = 1000)),
silent=TRUE))
if(is.character(fit3)==TRUE){
fit3 <- nls2(fxn,
data = dat,
start = grd1,
algorithm = "plinear-random",
control = list(maxiter = 1000))
pars <- as.vector(coefficients(fit3))
pars_kn <- pars[1L]; pars_n <- pars[2L]
knmin <- pars_kn*0.9 ;knmax <- pars_kn*1.1
nmin <- pars_n*0.9 ;nmax <- pars_n*1.1
grd2 <- data.frame(kn=c(knmin,knmax),
n =c(nmin,nmax))
fit3 <- nls2(fxn,
start = grd2,
algorithm = "grid-search",
control=list(maxiter=1000))
}else{}
predval <- function(x,n.dat){
Col1 <- c(rep(" |",each = n.dat))
Col2 <- c(rep("|",each = n.dat))
pred.val <- predict(fit3)
time <- x
P.Table <- data.frame(Col1,time,Col1,pred.val,Col2)
colnames(P.Table) <- c(" |","Time "," |","Pred Val","|")
message("Estimated Values")
print(P.Table, right=T, row.names = F)
}
error <- function(y){
rmse <- rmse(y,predict(fit3))
mae <- mae(y,predict(fit3))
mse <- mse(y,predict(fit3))
rae <- rae(y,predict(fit3))
PAIC <- AIC(fit3)
PBIC <- BIC(fit3)
SE <- sqrt((sum((y-predict(fit3))^2))/(n.dat-2))
Col1 <- c(" |"," |"," |"," |"," |"," |"," |")
Col2 <- c("|","|","|","|","|","|","|")
E.P <- c("Relative Mean Square Error ", "Mean Absolute Error ","Mean Squared Error ","Relative Absolute Error ","Akaike Information Criterion ","Bayesian Information Criterion ","Standard Error Estimate ")
E.V <- c(rmse,mae,mse,rae,PAIC,PBIC,SE)
E.Table <- data.frame(Col1,E.P,Col1,E.V,Col2)
colnames(E.Table) <- c(" |","Error Parameters "," |","Error Values","|")
message("Error Estimation")
print(E.Table, right=F, row.names = F)
}
message("Pseudo nth Order")
print(summary(fit3))
predval(x,n.dat)
error(y)
parspno1 <- as.vector(coefficients(fit3))
pars_kn <- parspno1[1L]; pars_n <- parspno1[2L]
theme_set(theme_bw())
fun.1 <- function(x) (qe*(1-(1/((1+((pars_n-1)*pars_kn*x*(qe^(pars_n-1))))^(1/(pars_n-1))))))
plot <- ggplot(dat, aes(x=x,y=y))+
geom_function(color="red", fun=fun.1,size=1)+
geom_point()+
labs(subtitle="Plot of qt vs time with nonlinear Pseudo nth Order model",
y="qt",
x="time",
title="Pseudo nth Order Model",
caption="Created by PUPAK using ggplot2")
print(plot)
}
if(missing(qe)){
EQ1(x,y)}
else if(is.null(qe)){
EQ1(x,y)}
else if(isFALSE(qe)){
EQ1(x,y)}
else{
EQ2(x,y,qe)}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.