Nothing
#' @keywords AirNow
#' @export
#' @import MazamaCoreUtils
#'
#' @title Download and aggregate multiple hourly data files from AirNow
#'
#' @param parameters vector of names of desired pollutants or NULL for all pollutants
#' @param startdate desired start date (integer or character representing YYYYMMDD[HH])
#' @param hours desired number of hours of data to assemble
#' @description This function makes repeated calls to \link{airnow_downloadHourlyData}
#' to obtain data from AirNow. All data obtained are then
#' combined into a single tibble and returned.
#'
#' Parameters included in AirNow data include at least the following list:
#' \enumerate{
#' \item{BARPR}
#' \item{BC}
#' \item{CO}
#' \item{NO}
#' \item{NO2}
#' \item{NO2Y}
#' \item{NO2X}
#' \item{NOX}
#' \item{NOOY}
#' \item{OC}
#' \item{OZONE}
#' \item{PM10}
#' \item{PM2.5}
#' \item{PRECIP}
#' \item{RHUM}
#' \item{SO2}
#' \item{SRAD}
#' \item{TEMP}
#' \item{UV-AETH}
#' \item{WD}
#' \item{WS}
#' }
#'
#' Passing a vector of one ore more of the above names as the \code{parameters} argument will cause the resulting
#' tibble to be filtered to contain only records for those parameters.
#'
#' @note As of 2016-12-27, it appears that hourly data are available only for 2016 and
#' not for earlier years.
#' @return Tibble of aggregated AirNow data.
#' @seealso \link{airnow_createDataDataframes}
#' @seealso \link{airnow_downloadHourlyData}
#' @examples
#' \dontrun{
#' # Fail gracefully if any resources are not available
#' try({
#'
#' tbl <- airnow_downloadParseData("PM2.5", 2016070112, hours = 24)
#'
#' }, silent = FALSE)
#' }
airnow_downloadParseData <- function(
parameters = NULL,
startdate = strftime(lubridate::now(tzone = "UTC"), "%Y%m%d00", tz = "UTC"),
hours = 24
) {
logger.debug(" ----- airnow_downloadParseData() ----- ")
# Format the startdate integer using lubridate
starttime <- MazamaCoreUtils::parseDatetime(startdate, timezone = "UTC")
# Pre-allocate an empty list of the appropriate length (basic R performance idiom)
tblList <- vector(mode="list", length=hours)
logger.trace("Downloading %d hourly data files from AirNow ...", floor(hours))
# Loop through the airnow_downloadHourlyData function and store each datafame in the list
for (i in 1:hours) {
datetime <- starttime + lubridate::dhours(i-1)
datestamp <- strftime(datetime, "%Y%m%d%H", tz="UTC")
logger.trace("Downloading AirNow data for %s", datestamp)
# Obtain an hour of AirNow data
result <- try( tbl <- airnow_downloadHourlyData(datestamp),
silent=TRUE)
if ( "try-error" %in% class(result) ) {
err_msg <- stringr::str_trim(geterrmessage())
logger.warn("Unable to download data: %s",err_msg)
next
}
if ( is.null(parameters) ) {
tblList[[i]] <- tbl
} else {
# NOTE: Filter inside the loop to avoid generating very large tibbles in memory
logger.trace("Filtering to retain only data for: %s", paste(parameters, collapse=", "))
# Generate a mask of records to retain
parametersMask <- rep(FALSE, nrow(tbl))
for (parameter in parameters) {
if ( !parameter %in% unique(tbl$ParameterName) ) {
logger.warn("Parameter '%s' is not found in the data", parameter)
} else {
parametersMask <- parametersMask | tbl$ParameterName == parameter
}
}
# Mask is complete, now apply it
tblList[[i]] <- tbl[parametersMask,]
}
}
# Combine all tibbles, rmoving duplicates
tbl <- dplyr::bind_rows(tblList) %>%
dplyr::distinct()
if ( is.null(parameters) ) {
logger.trace("Downloaded and parsed %d rows of AirNow data", nrow(tbl))
} else {
logger.trace("Downloaded and parsed %d rows of AirNow data for: %s", nrow(tbl), paste(parameters, collapse=", "))
}
return(tbl)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.