Description Usage Arguments Value Author(s) References See Also Examples
Simulate paired data with a given correlation (Kendall's tau=(2/pi)arcsine(r)) and marginals being Generalized Tukey-Lambda (G-TL) distributions.
1 | rpaired.gld(n, d1=c(0.000,0.1974,0.1349,0.1349), d2=c(0.000,0.1974,0.1349,0.1349), r)
|
n |
sample size. |
d1 |
vector of four parameters for the first G-TL distribution. |
d2 |
vector of four parameters for the second G-TL distribution. |
r |
correlation. |
An object of class paired.
Stephane CHAMPELY
Grambsch, P.M. (1994) Simple robust tests for scale differences in paired data. Biometrika, 81, 359-372.
rpaired.contaminated
1 2 3 4 5 | rpaired.gld(n=30,r=0.5)
data(lambda.table)
p<-rpaired.gld(n=30,d1=lambda.table[7,],d2=lambda.table[7,],r=0.5)
plot(p)
|
Loading required package: MASS
Loading required package: gld
Loading required package: mvtnorm
Loading required package: lattice
Loading required package: ggplot2
Attaching package: 'PairedData'
The following object is masked from 'package:base':
summary
Object of class "paired"
x y
1 -1.383481436 -0.1557095
2 0.961503046 1.3234708
3 0.645679141 0.9835916
4 -1.392088030 -1.2246516
5 0.853788896 0.5242832
6 0.043282994 0.5809305
7 -0.655767320 -0.9502411
8 0.008648537 -0.4313252
9 -1.121015073 -0.9851551
10 -1.176286759 -0.7603403
11 0.066253688 1.3354127
12 0.331106370 -0.8409748
13 -0.027127438 -1.4180975
14 0.711802624 0.2337487
15 1.130193225 2.1317876
16 -0.721077009 0.3716325
17 -0.445410025 -1.9716010
18 1.077732200 -0.7850311
19 -0.819118063 -0.3779949
20 -0.931865048 -0.7162324
21 2.087584975 2.1442466
22 1.036851047 -0.4705396
23 -1.125973616 -0.0216362
24 1.242798712 0.9625783
25 0.856675389 -0.1080652
26 -1.142084739 -1.9475785
27 0.377994672 -0.4077400
28 1.015759176 0.2978535
29 -0.332885966 -0.4359369
30 0.711631521 -1.9208014
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.