Nothing
#' calculate_placebo_estimates
#'
#' @description Handles the procedures for calculating point estimates and standard errors for the placebo test. Code is structured very similarly to the calculate_estimates() code, but with appropriate modifications for the placebo test. See that function for description of arguments. Bootstrap SEs are available for any specification. Conditional, unconditional standard errors only available for att, art, atc.
#' @return Returns a PanelEstimate object
#' @keywords internal
calculate_placebo_estimates <- function(qoi.in, data.in, lead,
number.iterations,
att.treated.unit.ids,
atc.treated.unit.ids,
outcome.variable,
unit.id.variable,
confidence.level,
att.sets,
atc.sets,
placebo.test = FALSE,
lag,
placebo.lead,
se.method = "bootstrap",
parallel = FALSE,
num.cores = 1)
{
if (se.method == "bootstrap")
{
if ( identical(qoi.in, "att") ||
identical(qoi.in, "atc") ||
identical(qoi.in, "art"))
{
col.idx <- sapply(placebo.lead - 2, function(x) paste0("Wit_", qoi.in, x))
x.in <- data.in[, col.idx, drop = FALSE]
create.lagged.dfs <- function(d, dv, idx, k)
{
d[, paste0(dv, "l", idx)] <-
lapply(k, function(x) data.table::shift(d[, dv], n = x, type = "lag"))
return(d)
}
y.in <- by(data.in, as.factor(data.in[, unit.id.variable]),
FUN = create.lagged.dfs,
dv = outcome.variable,
idx = placebo.lead - 1,
k = placebo.lead - 1,
simplify = FALSE)
data.in <- do.call(rbind, y.in)
y.in <- data.in[, paste0(outcome.variable, "l",
(placebo.lead - 1)), drop = FALSE]
z.in <- data.in[, paste0("dits_", qoi.in)]
o.coefs <- equality_four_placebo(x.in, y.in, z.in)
#do coefficient flip for atc
if (identical(qoi.in, "atc")) o.coefs <- -o.coefs
if (isTRUE(parallel)) {
coefs <- handle_bootstrap_placebo_parallel(qoi.in = qoi.in,
data.in = data.in,
placebo.lead = placebo.lead,
number.iterations = number.iterations,
att.treated.unit.ids = att.treated.unit.ids,
atc.treated.unit.ids = atc.treated.unit.ids,
outcome.variable = outcome.variable,
unit.id.variable = unit.id.variable,
confidence.level = confidence.level,
lag = lag,
num.cores = num.cores)
} else {
coefs <- handle_bootstrap_placebo(qoi.in = qoi.in,
data.in = data.in,
placebo.lead = placebo.lead,
number.iterations = number.iterations,
att.treated.unit.ids = att.treated.unit.ids,
atc.treated.unit.ids = atc.treated.unit.ids,
outcome.variable = outcome.variable,
unit.id.variable = unit.id.variable,
confidence.level = confidence.level,
lag = lag)
}
if (identical(qoi.in, "att") || identical(qoi.in, "art"))
{
sets <- att.sets
} else {
sets <- atc.sets
}
names(o.coefs) <- paste0("t-", placebo.lead)
z <- list("estimate" = o.coefs,
"bootstrapped.estimates" = coefs,
"bootstrap.iterations" = number.iterations,
"standard.error" = apply(coefs, 2, sd, na.rm = T),
"lag" = lag,
"lead" = lead,
"confidence.level" = confidence.level,
"qoi" = qoi.in,
"matched.sets" = sets,
"se.method" = se.method)
class(z) <- "PanelEstimate"
return(z)
} else if (identical(qoi.in, "ate"))
{
col.idx <- sapply(placebo.lead - 2,
function(x) paste0("Wit_", "att", x))
x.in <- data.in[, col.idx, drop = FALSE]
create.lagged.dfs <- function(d, dv, idx, k)
{
d[, paste0(dv, "l", idx)] <-
lapply(k, function(x) data.table::shift(d[, dv], n = x, type = "lag"))
return(d)
}
y.in <- by(data.in, as.factor(data.in[, unit.id.variable]),
FUN = create.lagged.dfs,
dv = outcome.variable,
idx = placebo.lead - 1,
k = placebo.lead - 1,
simplify = FALSE)
data.in <- do.call(rbind, y.in)
y.in <- data.in[, paste0(outcome.variable, "l",
(placebo.lead - 1)), drop = FALSE]
z.in <- data.in[, paste0("dits_", "att")]
att.coefs <- equality_four_placebo(x.in, y.in, z.in)
col.idx <- sapply(placebo.lead - 2,
function(x) paste0("Wit_", "atc", x))
x.in <- data.in[, col.idx, drop = FALSE]
create.lagged.dfs <- function(d, dv, idx, k)
{
d[, paste0(dv, "l", idx)] <-
lapply(k, function(x) data.table::shift(d[, dv], n = x, type = "lag"))
return(d)
}
y.in <- by(data.in, as.factor(data.in[, unit.id.variable]),
FUN = create.lagged.dfs,
dv = outcome.variable,
idx = placebo.lead - 1,
k = placebo.lead - 1,
simplify = FALSE)
data.in <- do.call(rbind, y.in)
y.in <- data.in[, paste0(outcome.variable, "l",
(placebo.lead - 1)), drop = FALSE]
z.in <- data.in[, paste0("dits_", "atc")]
atc.coefs <- equality_four_placebo(x.in, y.in, z.in)
atc.coefs <- -atc.coefs
o.coefs_ate <- (att.coefs*sum(data.in$dits_att) +
atc.coefs*sum(data.in$dits_atc))/
(sum(data.in$dits_att) + sum(data.in$dits_atc))
if (isTRUE(parallel)) {
coefs <- handle_bootstrap_placebo_parallel(qoi.in = qoi.in,
data.in = data.in,
placebo.lead = placebo.lead,
number.iterations = number.iterations,
att.treated.unit.ids = att.treated.unit.ids,
atc.treated.unit.ids = atc.treated.unit.ids,
outcome.variable = outcome.variable,
unit.id.variable = unit.id.variable,
confidence.level = confidence.level,
lag = lag,
num.cores = num.cores)
} else {
coefs <- handle_bootstrap_placebo(qoi.in = qoi.in,
data.in = data.in,
placebo.lead = placebo.lead,
number.iterations = number.iterations,
att.treated.unit.ids = att.treated.unit.ids,
atc.treated.unit.ids = atc.treated.unit.ids,
outcome.variable = outcome.variable,
unit.id.variable = unit.id.variable,
confidence.level = confidence.level,
lag = lag)
}
names(o.coefs_ate) <- paste0("t-", placebo.lead)
colnames(coefs) <- names(o.coefs_ate)
z <- list("estimate" = o.coefs_ate,
"bootstrapped.estimates" = coefs,
"bootstrap.iterations" = number.iterations,
"standard.error" = apply(coefs, 2, sd, na.rm = T),
"lag" = lag,
"lead" = lead,
"confidence.level" = confidence.level,
"qoi" = qoi.in,
"matched.sets" = list(att = att.sets,
atc = atc.sets),
"se.method" = se.method)
class(z) <- "PanelEstimate"
return(z)
} else {
stop("invalid qoi")
}
} else if (se.method %in% c("conditional", "unconditional") &&
qoi.in %in% c("att", "art", "atc")) {
col.idx <- sapply(placebo.lead - 2, function(x) paste0("Wit_", qoi.in, x))
x.in <- data.in[, col.idx, drop = FALSE]
create.lagged.dfs <- function(d, dv, idx, k)
{
d[, paste0(dv, "l", idx)] <-
lapply(k, function(x) data.table::shift(d[, dv], n = x, type = "lag"))
return(d)
}
y.in <- by(data.in, as.factor(data.in[, unit.id.variable]),
FUN = create.lagged.dfs,
dv = outcome.variable,
idx = placebo.lead - 1,
k = placebo.lead - 1,
simplify = FALSE)
data.in <- do.call(rbind, y.in)
y.in <- data.in[, paste0(outcome.variable, "l",
(placebo.lead - 1)), drop = FALSE]
z.in <- data.in[, paste0("dits_", qoi.in)]
o.coefs <- equality_four_placebo(x.in, y.in, z.in)
#do coefficient flip for atc
if (identical(qoi.in, "atc")) o.coefs <- -o.coefs
if (identical(se.method, "conditional"))
{
ll <- list()
for (f in placebo.lead) {
l.outcome <- paste0(outcome.variable, "l", f -1)
data.in[, l.outcome][is.na(data.in[, l.outcome])] <- 0
ll[[paste0("X", f)]] <-
handle_conditional_se(qoi.in = qoi.in,
data.in = data.in, lead = f - 2,
outcome.variable = paste0(outcome.variable, "l", f -1),
unit.id.variable = unit.id.variable)
}
ses <- unlist(ll)
names(ses) <- paste0("t-", placebo.lead)
}
if (identical(se.method, "unconditional"))
{
ll <- list()
for (f in placebo.lead) {
l.outcome <- paste0(outcome.variable, "l", f -1)
data.in[, l.outcome][is.na(data.in[, l.outcome])] <- 0
ll[[paste0("X", f)]] <-
handle_unconditional_se(qoi.in = qoi.in, data.in = data.in,
lead = f - 2,
outcome.variable = paste0(outcome.variable, "l", f -1),
unit.id.variable = unit.id.variable)
}
ses <- unlist(ll)
names(ses) <- paste0("t-", placebo.lead)
}
if (identical(qoi.in, "att") ||
identical(qoi.in, "art"))
{
sets <- att.sets
} else {
sets <- atc.sets
}
names(o.coefs) <- paste0("t-", placebo.lead)
z <- list("estimate" = o.coefs,
"standard.error" = ses,
"lag" = lag,
"lead" = lead,
"confidence.level" = confidence.level,
"qoi" = qoi.in,
"matched.sets" = sets,
"se.method" = se.method)
class(z) <- "PanelEstimate"
return(z)
} else {
stop("qoi and/or se.method not well specified")
}
}
#' equality_four_placebo
#' @description Small helper function implementing estimation function from Imai, Kim, and Wang (2023)
#' @return Returns numeric vector of results.
#' @keywords internal
equality_four_placebo <- function(x, y, z){
y[is.na(y)] <- 0
res <- colSums(x * y) / sum(z)
return(res)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.