Nothing
# @file formatting.R
#
# Copyright 2025 Observational Health Data Sciences and Informatics
#
# This file is part of PatientLevelPrediction
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#' Convert the plpData in COO format into a sparse R matrix
#'
#' @description
#' Converts the standard plpData to a sparse matrix
#'
#' @details
#' This function converts the covariates `Andromeda` table in COO format into a sparse matrix from
#' the package Matrix
#' @param plpData An object of type \code{plpData} with covariate in coo format - the patient level prediction
#' data extracted from the CDM.
#' @param cohort If specified the plpData is restricted to the rowIds in the cohort (otherwise plpData$labels is used)
#' @param map A covariate map (telling us the column number for covariates)
#'
#' @return
#' Returns a list, containing the data as a sparse matrix, the plpData covariateRef
#' and a data.frame named map that tells us what covariate corresponds to each column
#' This object is a list with the following components: \describe{
#' \item{data}{A sparse matrix with the rows corresponding to each person in the plpData and the columns corresponding to the covariates.}
#' \item{covariateRef}{The plpData covariateRef.}
#' \item{map}{A data.frame containing the data column ids and the corresponding covariateId from covariateRef.}
#' }
#' @examples
#' \donttest{ \dontshow{ # takes too long }
#' library(dplyr)
#' data("simulationProfile")
#' plpData <- simulatePlpData(simulationProfile, n=100)
#' # how many covariates are there before we convert to sparse matrix
#' plpData$covariateData$covariates %>%
#' dplyr::group_by(.data$covariateId) %>%
#' dplyr::summarise(n = n()) %>%
#' dplyr::collect() %>% nrow()
#' sparseData <- toSparseM(plpData, cohort=plpData$cohorts)
#' # how many covariates are there after we convert to sparse matrix'
#' sparseData$dataMatrix@Dim[2]
#' }
#' @export
toSparseM <- function(plpData, cohort = NULL, map = NULL) {
start <- Sys.time()
ParallelLogger::logInfo(paste0("starting toSparseM"))
ParallelLogger::logDebug(
paste0(
"Max covariateId in original covariates: ",
plpData$covariateData$covariates %>%
dplyr::summarise(max = max(.data$covariateId, na.rm = TRUE)) %>%
dplyr::pull()
)
)
# assign covariateId to colummId specified in map (if null create columnIds)
# assign rowId to xId
# return the new covariateData (rowId changes in covariates plus covariates/covariateRef with modified columnIds)
# return labels with modified rowId if plpData$labels exists
if (!is.null(plpData$labels)) {
newcovariateData <- MapIds(
plpData$covariateData,
cohort = plpData$labels,
mapping = map
)
} else {
newcovariateData <- MapIds(
plpData$covariateData,
cohort = cohort,
mapping = map
)
}
ParallelLogger::logDebug(paste0("# covariates in mapped covariateRef: ", nrow(newcovariateData$covariateRef)))
maxY <- newcovariateData$mapping %>%
dplyr::summarise(max = max(.data$columnId, na.rm = TRUE)) %>%
dplyr::pull()
ParallelLogger::logDebug(paste0("Max newCovariateId in mapping: ", maxY))
maxX <- newcovariateData$cohort %>%
dplyr::summarise(max = max(.data$rowId, na.rm = TRUE)) %>%
dplyr::pull()
ParallelLogger::logDebug(paste0("Max rowId in new : ", maxX))
ParallelLogger::logInfo(paste0("toSparseM non temporal used"))
checkRam(newcovariateData) # estimates size of RAM required and prints it
data <- Matrix::sparseMatrix(
i = newcovariateData$covariates %>% dplyr::select("rowId") %>% dplyr::pull(),
j = newcovariateData$covariates %>% dplyr::select("columnId") %>% dplyr::pull(),
x = newcovariateData$covariates %>% dplyr::select("covariateValue") %>% dplyr::pull(),
dims = c(maxX, maxY)
)
ParallelLogger::logDebug(paste0("Sparse matrix with dimensionality: ", paste(dim(data), collapse = ",")))
ParallelLogger::logInfo(paste0("finishing toSparseM"))
result <- list(
dataMatrix = data,
labels = newcovariateData$cohort %>% dplyr::collect(),
covariateRef = as.data.frame(newcovariateData$covariateRef),
covariateMap = as.data.frame(newcovariateData$mapping)
)
delta <- Sys.time() - start
ParallelLogger::logInfo(paste0("toSparseM took ", delta, " ", attr(delta, "units")))
return(result)
}
#' Map covariate and row Ids so they start from 1
#' @description this functions takes covariate data and a cohort/population and remaps
#' the covariate and row ids, restricts to pop and saves/creates mapping
#' @param covariateData a covariateData object
#' @param cohort if specified rowIds restricted to the ones in cohort
#' @param mapping A pre defined mapping to use
#' @returns a new `covariateData` object with remapped covariate and row ids
#' @examples
#' covariateData <- Andromeda::andromeda(
#' covariates = data.frame(rowId = c(1, 3, 5, 7, 9),
#' covariateId = c(10, 20, 10, 10, 20),
#' covariateValue = c(1, 1, 1, 1, 1)),
#' covariateRef = data.frame(covariateId = c(10, 20),
#' covariateNames = c("covariateA",
#' "covariateB"),
#' analysisId = c(1, 1)))
#' mappedData <- MapIds(covariateData)
#' # columnId and rowId are now starting from 1 and are consecutive
#' mappedData$covariates
#' @export
MapIds <- function(
covariateData,
cohort = NULL,
mapping = NULL) {
ParallelLogger::logInfo(paste0("starting to map the columns and rows"))
# change the rowIds in cohort (if exists)
if (!is.null(cohort)) {
rowMap <- data.frame(
rowId = cohort %>% dplyr::select("rowId")
)
rowMap$xId <- 1:nrow(rowMap)
} else {
rowMap <- data.frame(
rowId = covariateData$covariates %>%
dplyr::distinct(.data$rowId) %>%
dplyr::pull()
)
rowMap$xId <- 1:nrow(rowMap)
}
covariateData$rowMap <- rowMap
on.exit(covariateData$rowMap <- NULL)
# change the rowIds in covariateData$covariates
if (is.null(mapping)) {
mapping <- data.frame(
covariateId = covariateData$covariates %>%
dplyr::inner_join(covariateData$rowMap, by = "rowId") %>% # first restrict the covariates to the rowMap$rowId
dplyr::distinct(.data$covariateId) %>%
dplyr::arrange(.data$covariateId) %>%
dplyr::pull()
)
mapping$columnId <- 1:nrow(mapping)
}
covariateData$mapping <- mapping
on.exit(covariateData$mapping <- NULL, add = TRUE)
newCovariateData <- Andromeda::andromeda()
# change the covariateIds in covariates
newCovariateData$covariates <- covariateData$covariates %>%
dplyr::inner_join(covariateData$mapping, by = "covariateId")
# change the covariateIds in covariateRef
newCovariateData$covariateRef <- covariateData$mapping %>%
dplyr::inner_join(covariateData$covariateRef, by = "covariateId")
# change the rowId in covariates
newCovariateData$rowMap <- rowMap
newCovariateData$covariates <- newCovariateData$covariates %>%
dplyr::inner_join(newCovariateData$rowMap, by = "rowId") %>%
dplyr::select(-"rowId") %>%
dplyr::rename(rowId = "xId")
if (!is.null(cohort)) {
# change the rowId in labels
newCovariateData$cohort <- cohort %>%
dplyr::inner_join(rowMap, by = "rowId") %>%
dplyr::rename(
originalRowId = "rowId",
rowId = "xId"
) %>%
dplyr::arrange(.data$rowId) # make sure it is ordered lowest to highest
}
newCovariateData$mapping <- mapping
ParallelLogger::logInfo(paste0("finished MapCovariates"))
return(newCovariateData)
}
checkRam <- function(covariateData) {
nrowV <- covariateData$covariates %>%
dplyr::summarise(size = dplyr::n()) %>%
dplyr::collect()
estRamB <- (nrowV$size / 1000000 * 24000984)
ParallelLogger::logInfo(paste0("plpData size estimated to use ", round(estRamB / 1000000000, 1), "GBs of RAM"))
return(invisible(TRUE))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.