Nothing
# @file RunPlpHelpers.R
#
# Copyright 2025 Observational Health Data Sciences and Informatics
#
# This file is part of PatientLevelPrediction
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
printHeader <- function(plpData,
targetId,
outcomeId,
analysisId,
analysisName,
executionDateTime) {
ParallelLogger::logInfo(paste0("Patient-Level Prediction Package version ",
utils::packageVersion("PatientLevelPrediction")))
ParallelLogger::logInfo(paste0("Study started at: ", executionDateTime))
ParallelLogger::logInfo(sprintf("%-20s%s", "AnalysisID: ", analysisId))
ParallelLogger::logInfo(sprintf("%-20s%s", "AnalysisName: ", analysisName))
# add header to analysis log
ParallelLogger::logInfo(sprintf("%-20s%s", "TargetID: ", targetId))
ParallelLogger::logInfo(sprintf("%-20s%s", "OutcomeID: ", outcomeId))
ParallelLogger::logInfo(sprintf("%-20s%s", "Cohort size: ", nrow(plpData$cohorts)))
if (!is.null(plpData$population)) {
ParallelLogger::logInfo(sprintf("%-20s%s", "Initial population size: ",
nrow(plpData$population)))
ParallelLogger::logInfo(sprintf("%-20s%s", "Initial cases: ",
sum(plpData$population$outcomeCount > 0)))
}
ParallelLogger::logInfo(sprintf("%-20s%s", "Covariates: ",
plpData$covariateData$covariateRef %>%
dplyr::pull(.data$covariateId) %>%
length()))
return(invisible(TRUE))
}
checkInputs <- function(inputs) {
inputNames <- names(inputs)
checkIsClass(inputs[["plpData"]], c("plpData"))
checkIsClass(inputs[["outcomeId"]], c("numeric", "integer"))
if (FeatureExtraction::isTemporalCovariateData(inputs$plpData$covariateData)
&& (is.null(attr(inputs$modelSettings$param, "temporalModel")))) {
stop("Temporal covariates detected but chosen model does not support temporal covariates")
}
for (inputName in inputNames[!inputNames %in% c("plpData", "outcomeId")]) {
ParallelLogger::logDebug(paste0(
names(inputs[[inputName]]), " : ",
unlist(lapply(inputs[[inputName]], function(x) paste0(unlist(x), collapse = "-")))
))
# check class is correct
if (!inherits(x = inputs[[inputName]], what = c(inputName, "list"))) {
ParallelLogger::logError(paste0("Incorrect ", inputName))
stop("Bad input")
}
if (inherits(x = inputs[[inputName]], what = "list")) {
if (sum(unlist(lapply(inputs[[inputName]], function(obj) {
inherits(x = obj, what = inputName)
}))) != length(inputs[[inputName]])) {
ParallelLogger::logError(paste0("Incorrect ", inputName))
stop("Bad input list")
}
}
}
# return all the settings
return(invisible(TRUE))
}
#' Creates list of settings specifying what parts of runPlp to execute
#'
#' @details
#' define what parts of runPlp to execute
#'
#' @param runSplitData TRUE or FALSE whether to split data into train/test
#' @param runSampleData TRUE or FALSE whether to over or under sample
#' @param runFeatureEngineering TRUE or FALSE whether to do feature engineering
#' @param runPreprocessData TRUE or FALSE whether to do preprocessing
#' @param runModelDevelopment TRUE or FALSE whether to develop the model
#' @param runCovariateSummary TRUE or FALSE whether to create covariate summary
#'
#' @return
#' list with TRUE/FALSE for each part of runPlp
#' @examples
#' # create settings with only split and model development
#' createExecuteSettings(runSplitData = TRUE, runModelDevelopment = TRUE)
#' @export
createExecuteSettings <- function(
runSplitData = FALSE,
runSampleData = FALSE,
runFeatureEngineering = FALSE,
runPreprocessData = FALSE,
runModelDevelopment = FALSE,
runCovariateSummary = FALSE) {
checkIsClass(runSplitData, "logical")
checkIsClass(runSampleData, "logical")
checkIsClass(runFeatureEngineering, "logical")
checkIsClass(runPreprocessData, "logical")
checkIsClass(runModelDevelopment, "logical")
checkIsClass(runCovariateSummary, "logical")
result <- list(
runSplitData = runSplitData,
runSampleData = runSampleData,
runFeatureEngineering = runFeatureEngineering,
runPreprocessData = runPreprocessData,
runModelDevelopment = runModelDevelopment,
runCovariateSummary = runCovariateSummary
)
class(result) <- "executeSettings"
return(result)
}
#' Creates default list of settings specifying what parts of runPlp to execute
#'
#' @details
#' runs split, preprocess, model development and covariate summary
#'
#' @return
#' list with TRUE for split, preprocess, model development and covariate summary
#'
#' @examples
#' createDefaultExecuteSettings()
#' @export
createDefaultExecuteSettings <- function() {
createExecuteSettings(
runSplitData = TRUE,
runSampleData = FALSE,
runFeatureEngineering = FALSE,
runPreprocessData = TRUE,
runModelDevelopment = TRUE,
runCovariateSummary = TRUE
)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.