Nothing
# @file Sampling.R
# Copyright 2025 Observational Health Data Sciences and Informatics
#
# This file is part of PatientLevelPrediction
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#' Create the settings for defining how the trainData from \code{splitData} are sampled using
#' default sample functions.
#'
#' @details
#' Returns an object of class \code{sampleSettings} that specifies the sampling function that will be called and the settings
#'
#' @param type (character) Choice of: \itemize{
#' \item 'none' No sampling is applied - this is the default
#' \item 'underSample' Undersample the non-outcome class to make the data more balanced
#' \item 'overSample' Oversample the outcome class by adding in each outcome multiple times
#' }
#' @param numberOutcomestoNonOutcomes (numeric) A numeric specifying the required number of outcomes per non-outcomes
#' @param sampleSeed (numeric) A seed to use when splitting the data for reproducibility (if not set a random number will be generated)
#'
#' @return
#' An object of class \code{sampleSettings}
#' @examplesIf rlang::is_installed("Eunomia")
#' \donttest{
#' # sample even rate of outcomes to non-outcomes
#' sampleSetting <- createSampleSettings(type = "underSample",
#' numberOutcomestoNonOutcomes = 1,
#' sampleSeed = 42)
#' }
#' @export
createSampleSettings <- function(type = "none",
numberOutcomestoNonOutcomes = 1,
sampleSeed = sample(10000, 1)) {
checkIsClass(numberOutcomestoNonOutcomes, c("numeric", "integer"))
checkHigher(numberOutcomestoNonOutcomes, 0)
checkIsClass(sampleSeed, c("numeric", "integer"))
checkIsClass(type, c("character"))
if (!type %in% c("none", "underSample", "overSample")) {
stop("Incorrect type. Pick: none/underSample/overSample")
}
if (type %in% c("underSample", "overSample")) {
ParallelLogger::logWarn("The previous documentation for `numberOutcomestoNonOutcomes` used to not reflect the functionality and has now been changed. The user needs to make sure the code is not relying on what was in the docs previously.")
}
sampleSettings <- list(
numberOutcomestoNonOutcomes = numberOutcomestoNonOutcomes,
sampleSeed = ifelse(type == "none", 1, sampleSeed) # to make it the same for none
)
if (type == "none") {
attr(sampleSettings, "fun") <- "sameData"
}
if (type == "underSample") {
attr(sampleSettings, "fun") <- "underSampleData"
}
if (type == "overSample") {
attr(sampleSettings, "fun") <- "overSampleData" # TODO
}
class(sampleSettings) <- "sampleSettings"
return(sampleSettings)
}
# code to run the sampling - add desc
sampleData <- function(trainData, sampleSettings) {
start <- Sys.time()
metaData <- attr(trainData, "metaData")
ParallelLogger::logInfo("Starting data sampling")
# if a single setting, make it a list
if (inherits(sampleSettings, "sampleSettings")) {
sampleSettings <- list(sampleSettings)
}
for (sampleSetting in sampleSettings) {
fun <- attr(sampleSetting, "fun")
args <- list(
trainData = trainData,
sampleSettings = sampleSetting
)
ParallelLogger::logInfo(paste0("Applying ", fun))
trainData <- do.call(eval(parse(text = fun)), args)
}
ParallelLogger::logInfo("Finished data sampling")
metaData$sampleSettings <- sampleSettings
attr(trainData, "metaData") <- metaData
delta <- Sys.time() - start
ParallelLogger::logInfo("Sampling took ",
signif(delta, 3), " ", attr(delta, "units"))
return(trainData)
}
sameData <- function(trainData, ...) {
ParallelLogger::logInfo("No sampling - returning same data")
# add attribute for FE
featureEngeering <- list(
funct = "sameData",
settings = list(
none = TRUE
)
)
attr(trainData, "metaData")$featureEngineering <- listAppend(
attr(trainData, "metaData")$featureEngineering,
featureEngeering
)
return(trainData)
}
underSampleData <- function(trainData, sampleSettings) {
checkIsClass(sampleSettings$sampleSeed, c("numeric", "integer"))
checkIsClass(sampleSettings$numberOutcomestoNonOutcomes, c("numeric", "integer"))
checkHigherEqual(sampleSettings$numberOutcomestoNonOutcomes, 0)
ParallelLogger::logInfo(paste0("sampleSeed: ", sampleSettings$sampleSeed))
ParallelLogger::logInfo(paste0("numberOutcomestoNonOutcomes: ", sampleSettings$numberOutcomestoNonOutcomes))
set.seed(sampleSettings$sampleSeed)
ParallelLogger::logInfo(paste0("Starting undersampling with seed ", sampleSettings$sampleSeed))
population <- trainData$labels %>% dplyr::collect()
folds <- trainData$folds %>% dplyr::collect()
population <- merge(population, folds, by = "rowId")
ParallelLogger::logInfo(paste0(
"Initial train data has ", sum(population$outcomeCount > 0), " outcomes to ",
sum(population$outcomeCount == 0), " non-outcomes"
))
pplOfInterest <- c()
for (i in unique(folds$index)) {
outcomeIds <- population$rowId[population$outcomeCount > 0 & population$index == i]
nonoutcomeIds <- population$rowId[population$outcomeCount == 0 & population$index == i]
sampleSize <- length(outcomeIds) / sampleSettings$numberOutcomestoNonOutcomes
if (sampleSize > length(nonoutcomeIds)) {
ParallelLogger::logWarn("Non-outcome count less that require sample size")
sampleSize <- length(nonoutcomeIds)
}
# randomly pick non-outcome people
sampleNonoutcomeIds <- sample(nonoutcomeIds, sampleSize)
pplOfInterest <- c(pplOfInterest, outcomeIds, sampleNonoutcomeIds)
}
# filter to these patients
sampleTrainData <- list()
class(sampleTrainData) <- "plpData"
sampleTrainData$labels <- trainData$labels %>% dplyr::filter(.data$rowId %in% pplOfInterest)
sampleTrainData$folds <- trainData$folds %>% dplyr::filter(.data$rowId %in% pplOfInterest)
sampleTrainData$covariateData <- Andromeda::andromeda()
sampleTrainData$covariateData$covariateRef <- trainData$covariateData$covariateRef
sampleTrainData$covariateData$covariates <- trainData$covariateData$covariates %>%
dplyr::filter(.data$rowId %in% pplOfInterest)
# update metaData$populationSize = nrow(trainData$labels)
metaData <- attr(trainData$covariateData, "metaData")
metaData$populationSize <- nrow(sampleTrainData$labels)
attr(sampleTrainData$covariateData, "metaData") <- metaData
class(sampleTrainData$covariateData) <- "CovariateData"
return(sampleTrainData)
}
overSampleData <- function(trainData, sampleSettings) {
checkIsClass(sampleSettings$sampleSeed, c("numeric", "integer"))
checkIsClass(sampleSettings$numberOutcomestoNonOutcomes, c("numeric", "integer"))
checkHigherEqual(sampleSettings$numberOutcomestoNonOutcomes, 0)
ParallelLogger::logInfo(paste0("sampleSeed: ", sampleSettings$sampleSeed))
ParallelLogger::logInfo(paste0("numberOutcomestoNonOutcomes: ", sampleSettings$numberOutcomestoNonOutcomes))
set.seed(sampleSettings$sampleSeed)
ParallelLogger::logInfo(paste0("Starting oversampling with seed ", sampleSettings$sampleSeed))
population <- trainData$labels %>% dplyr::collect()
folds <- trainData$folds %>% dplyr::collect()
population <- merge(population, folds, by = "rowId")
ParallelLogger::logInfo(paste0(
"Initial train data has ", sum(population$outcomeCount > 0), " outcomes to ",
sum(population$outcomeCount == 0), " non-outcomes"
))
sampleTrainData <- list()
class(sampleTrainData) <- "plpData"
sampleTrainData$labels <- trainData$labels %>% dplyr::collect()
sampleTrainData$folds <- trainData$folds %>% dplyr::collect()
sampleTrainData$covariateData <- Andromeda::andromeda()
sampleTrainData$covariateData$covariateRef <- trainData$covariateData$covariateRef
sampleTrainData$covariateData$covariates <- trainData$covariateData$covariates
for (i in unique(folds$index)) {
outcomeIds <- population$rowId[population$outcomeCount > 0 & population$index == i]
nonoutcomeIds <- population$rowId[population$outcomeCount == 0 & population$index == i]
sampleSize <- floor(length(nonoutcomeIds) * sampleSettings$numberOutcomestoNonOutcomes)
if (sampleSize > length(nonoutcomeIds)) {
ParallelLogger::logWarn("Non-outcome count less than required sample size")
sampleSize <- length(nonoutcomeIds) - length(outcomeIds)
} else {
sampleSize <- sampleSize - length(outcomeIds)
}
while (sampleSize > 0) {
tempSampleSize <- min(length(outcomeIds), sampleSize)
# randomly oversample outcome people
sampleOutcomeIds <- sample(outcomeIds, tempSampleSize, replace = TRUE)
pplOfInterest <- unique(sampleOutcomeIds) # to enable oversampling with replacement
sampleSize <- sampleSize - length(pplOfInterest)
addTrainData <- list()
addTrainData$labels <- trainData$labels %>% dplyr::filter(.data$rowId %in% pplOfInterest)
addTrainData$labels <- addTrainData$labels %>% dplyr::mutate(newRowId = 1:nrow(addTrainData$labels))
addTrainData$labels <- addTrainData$labels %>% dplyr::mutate(newRowId = .data$newRowId + max(sampleTrainData$labels$rowId))
addTrainData$folds <- trainData$folds %>% dplyr::filter(.data$rowId %in% pplOfInterest)
addTrainData$folds <- dplyr::inner_join(addTrainData$folds, addTrainData$labels[, c("rowId", "newRowId")], copy = TRUE, by = "rowId")
addTrainData$folds <- addTrainData$folds %>% dplyr::mutate(rowId = .data$newRowId)
addTrainData$folds <- dplyr::select(addTrainData$folds, -dplyr::starts_with("newRowId"))
addTrainData$covariateData$covariates <- trainData$covariateData$covariates %>% dplyr::filter(.data$rowId %in% pplOfInterest)
addTrainData$covariateData$covariates <- dplyr::inner_join(addTrainData$covariateData$covariates, addTrainData$labels[, c("rowId", "newRowId")], copy = TRUE, by = "rowId")
addTrainData$covariateData$covariates <- addTrainData$covariateData$covariates %>% dplyr::mutate(rowId = .data$newRowId)
addTrainData$covariateData$covariates <- dplyr::select(addTrainData$covariateData$covariates, -dplyr::starts_with("newRowId"))
addTrainData$labels <- addTrainData$labels %>% dplyr::mutate(rowId = .data$newRowId)
addTrainData$labels <- dplyr::select(addTrainData$labels, -dplyr::starts_with("newRowId"))
sampleTrainData$labels <- dplyr::bind_rows(sampleTrainData$labels, addTrainData$labels)
sampleTrainData$folds <- dplyr::bind_rows(sampleTrainData$folds, addTrainData$folds)
Andromeda::appendToTable(sampleTrainData$covariateData$covariates, addTrainData$covariateData$covariates)
}
}
# update metaData$populationSize = nrow(trainData$labels)
metaData <- attr(trainData$covariateData, "metaData")
metaData$populationSize <- nrow(sampleTrainData$labels)
attr(sampleTrainData$covariateData, "metaData") <- metaData
class(sampleTrainData$covariateData) <- "CovariateData"
return(sampleTrainData)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.