R/kurtosis.R

#' Kurtosis
#' 
#' compute kurtosis of a univariate distribution
#' 
#' This function was ported from the RMetrics package fUtilities to eliminate a
#' dependency on fUtilties being loaded every time.  This function is identical
#' except for the addition of \code{\link{checkData}} and additional labeling.
#'
#' \deqn{Kurtosis(moment) = \frac{1}{n}*\sum^{n}_{i=1}(\frac{r_i - \overline{r}}{\sigma_P})^4}{kurtosis(moment) = sum((x-mean(x))^4/var(x)^2)/length(x)}
#' \deqn{Kurtosis(excess) = \frac{1}{n}*\sum^{n}_{i=1}(\frac{r_i - \overline{r}}{\sigma_P})^4 - 3}{kurtosis(excess) = sum((x-mean(x))^4/var(x)^2)/length(x) - 3}
#' \deqn{Kurtosis(sample) =  \frac{n*(n+1)}{(n-1)*(n-2)*(n-3)}*\sum^{n}_{i=1}(\frac{r_i - \overline{r}}{\sigma_{S_P}})^4 }{kurtosis(sample) = sum(((x-mean(x))/var(x))^4)*n*(n+1)/((n-1)*(n-2)*(n-3))}
#' \deqn{Kurtosis(fisher) = \frac{(n+1)*(n-1)}{(n-2)*(n-3)}*(\frac{\sum^{n}_{i=1}\frac{(r_i)^4}{n}}{(\sum^{n}_{i=1}(\frac{(r_i)^2}{n})^2} - \frac{3*(n-1)}{n+1})}{kurtosis (fisher) = ((n+1)*(n-1)*((sum(x^4)/n)/(sum(x^2)/n)^2 - (3*(n-1))/(n+1)))/((n-2)*(n-3))}
#' \deqn{Kurtosis(sample excess) =  \frac{n*(n+1)}{(n-1)*(n-2)*(n-3)}*\sum^{n}_{i=1}(\frac{r_i - \overline{r}}{\sigma_{S_P}})^4  - \frac{3*(n-1)^2}{(n-2)*(n-3)}}{kurtosis(sample excess) = sum(((x-mean(x))/var(x))^4)*n*(n+1)/((n-1)*(n-2)*(n-3)) - 3*(n-1)^2/((n-2)*(n-3))}
#'
#'
#' where \eqn{n} is the number of return, \eqn{\overline{r}} is the mean of the return
#' distribution, \eqn{\sigma_P} is its standard deviation and \eqn{\sigma_{S_P}} is its
#' sample standard deviation
#' 
#' @param na.rm a logical. Should missing values be removed?
#' @param method a character string which specifies the method of computation.
#' These are either \code{"moment"}, \code{"fisher"}, or \code{"excess"}.  If
#' \code{"excess"} is selected, then the value of the kurtosis is computed by
#' the \code{"moment"} method and a value of 3 will be subtracted.  The
#' \code{"moment"} method is based on the definitions of kurtosis for
#' distributions; these forms should be used when resampling (bootstrap or
#' jackknife). The \code{"fisher"} method correspond to the usual "unbiased"
#' definition of sample variance, although in the case of kurtosis exact
#' unbiasedness is not possible. The \code{"sample"} method gives the sample
#' kurtosis of the distribution.
#' @param x a numeric vector or object.
#' @param \dots arguments to be passed.
#' @author Diethelm Wuertz, Matthieu Lestel
#' @seealso \code{\link{skewness}}.
#' @references Carl Bacon, \emph{Practical portfolio performance measurement 
#' and attribution}, second edition 2008 p.84-85
###keywords univar
#' @examples
#' 
#' ## mean -
#' ## var -
#'    # Mean, Variance:
#'    r = rnorm(100)
#'    mean(r)
#'    var(r)
#' 
#' ## kurtosis -
#'    kurtosis(r)
#' 
#' data(managers)
#' kurtosis(managers[,1:8])
#'
#' data(portfolio_bacon)
#' print(kurtosis(portfolio_bacon[,1], method="sample")) #expected 3.03
#' print(kurtosis(portfolio_bacon[,1], method="sample_excess")) #expected -0.41
#' print(kurtosis(managers['1996'], method="sample"))
#' print(kurtosis(managers['1996',1], method="sample"))
#' 
#' @export
kurtosis <-
    function (x, na.rm = FALSE, method = c("excess", "moment", "fisher", "sample", "sample_excess"), ...)
{
    # @author Diethelm Wuertz
    # @author Brian Peterson   (modify for PerformanceAnalytics)

    # Description:
    #   Returns the value of the kurtosis of a distribution function.

    # Details:
    #   Missing values can be handled.

    # FUNCTION:

    # Method:
    method = match.arg(method)

    R=checkData(x,method="matrix")

    columns = ncol(R)
    columnnames=colnames(R)
    # FUNCTION:
    for(column in 1:columns) {
        x = as.vector(na.omit(R[,column]))
        #x = R[,column]

        if (!is.numeric(x)) stop("The selected column is not numeric")

        # Remove NAs:
        if (na.rm) x = x[!is.na(x)]

        # Warnings:
        if (!is.numeric(x) && !is.complex(x) && !is.logical(x)) {
            warning("argument is not numeric or logical: returning NA")
            return(as.numeric(NA))}


        # Kurtosis:
        n = length(x)
        if (is.integer(x)) x = as.numeric(x)
        if (method == "excess") {
            kurtosis = sum((x-mean(x))^4/(var(x)*(n-1)/n)^2)/length(x) - 3
        }
        if (method == "moment") {
            kurtosis = sum((x-mean(x))^4/(var(x)*(n-1)/n)^2)/length(x)
        }
        if (method == "fisher") {
            kurtosis = ((n+1)*(n-1)*((sum(x^4)/n)/(sum(x^2)/n)^2 -
                (3*(n-1))/(n+1)))/((n-2)*(n-3))
        }
	if (method == "sample") {
	   kurtosis = sum((x-mean(x))^4/var(x)^2)*n*(n+1)/((n-1)*(n-2)*(n-3))
	}
	if (method == "sample_excess") {
	    kurtosis = sum((x-mean(x))^4/var(x)^2)*n*(n+1)/((n-1)*(n-2)*(n-3)) - 3*(n-1)^2/((n-2)*(n-3))
	}
        kurtosis=array(kurtosis)
        if (column==1) {
            #create data.frame
            result=data.frame(kurtosis=kurtosis)
        } else {
            kurtosis=data.frame(kurtosis=kurtosis)
            result=cbind(result,kurtosis)
        }
    } #end columns loop

    if(ncol(result) == 1) {
        # some backflips to name the single column zoo object
        result = as.numeric(result)
    }
    else{
        colnames(result) = columnnames
        rownames(result) = "Excess Kurtosis"
    }
    # Return Value:
    result

}

###############################################################################
# R (http://r-project.org/) Econometrics for Performance and Risk Analysis
#
# Copyright (c) 2004-2020 Peter Carl and Brian G. Peterson
#
# This R package is distributed under the terms of the GNU Public License (GPL)
# for full details see the file COPYING
#
# $Id$
#
###############################################################################

Try the PerformanceAnalytics package in your browser

Any scripts or data that you put into this service are public.

PerformanceAnalytics documentation built on Feb. 6, 2020, 5:11 p.m.