Nothing
#' Downside Risk Summary: Statistics and Stylized Facts
#'
#' Creates a table of estimates of downside risk measures for comparison across
#' multiple instruments or funds.
#'
#'
#' @param R an xts, vector, matrix, data frame, timeSeries or zoo object of
#' asset returns
#' @param ci confidence interval, defaults to 95\%
#' @param scale number of periods in a year (daily scale = 252, monthly scale =
#' 12, quarterly scale = 4)
#' @param Rf risk free rate, in same period as your returns
#' @param MAR Minimum Acceptable Return, in the same periodicity as your
#' returns
#' @param p confidence level for calculation, default p=.99
#' @param digits number of digits to round results to
#' @author Peter Carl
#' @seealso
#' \code{\link{DownsideDeviation}} \cr
#' \code{\link{maxDrawdown}} \cr
#' \code{\link{VaR}} \cr
#' \code{\link{ES}} \cr
###keywords ts multivariate distribution models
#' @examples
#'
#' data(edhec)
#' table.DownsideRisk(edhec, Rf=.04/12, MAR =.05/12, p=.95)
#'
#' result=t(table.DownsideRisk(edhec, Rf=.04/12, MAR =.05/12, p=.95))
#' require("Hmisc")
#' textplot(format.df(result, na.blank=TRUE, numeric.dollar=FALSE,
#' cdec=rep(3,dim(result)[2])), rmar = 0.8, cmar = 1.5,
#' max.cex=.9, halign = "center", valign = "top", row.valign="center",
#' wrap.rownames=15, wrap.colnames=10, mar = c(0,0,3,0)+0.1)
#' title(main="Downside Risk Statistics")
#'
#' @export
table.DownsideRisk <-
function (R, ci = 0.95, scale = NA, Rf = 0, MAR = .1/12, p= 0.95, digits = 4)
{# @author Peter Carl
# DESCRIPTION:
# Downside Risk Summary: Statistics and Stylized Facts
# Inputs:
# R: a regular timeseries of returns (rather than prices)
# Output:
# A table of estimates of downside risk measures
#FUNCTION:
y = checkData(R, method = "zoo")
if(!is.null(dim(Rf)))
Rf = checkData(Rf, method = "zoo")
# Set up dimensions and labels
columns = ncol(y)
rows = nrow(y)
columnnames = colnames(y)
rownames = rownames(y)
if(is.na(scale)) {
freq = periodicity(y)
switch(freq$scale,
minute = {stop("Data periodicity too high")},
hourly = {stop("Data periodicity too high")},
daily = {scale = 252},
weekly = {scale = 52},
monthly = {scale = 12},
quarterly = {scale = 4},
yearly = {scale = 1}
)
}
# for each column, do the following:
for(column in 1:columns) {
x = na.omit(y[,column,drop=FALSE])
# for each column, make sure that R and Rf are for the same dates
if(!is.null(dim(Rf))){ # if Rf is a column
z = merge(x,Rf)
zz = na.omit(z)
x = zz[,1,drop=FALSE]
Rf.subset = zz[,2,drop=FALSE]
}
else { # unless Rf is a single number
Rf.subset = Rf
}
z = c(
DownsideDeviation(x,MAR=mean(x)),
sd.xts(subset(as.vector(x),as.vector(x)>0)),
sd.xts(subset(as.vector(x),as.vector(x)<0)),
DownsideDeviation(x,MAR=MAR),
DownsideDeviation(x,MAR=Rf.subset),
DownsideDeviation(x,MAR=0),
maxDrawdown(x),
VaR(x, p=p,method="historical"),
ES(x, p=p,method="historical"),
VaR(x, p=p),
ES(x, p=p)
)
znames = c(
"Semi Deviation",
"Gain Deviation",
"Loss Deviation",
paste("Downside Deviation (MAR=",MAR*scale*100,"%)", sep=""),
paste("Downside Deviation (Rf=",base::round(mean(Rf.subset*scale*100),2),"%)", sep=""),
paste("Downside Deviation (0%)", sep=""),
"Maximum Drawdown",
paste("Historical VaR (",p*100,"%)",sep=""),
paste("Historical ES (",p*100,"%)",sep=""),
paste("Modified VaR (",p*100,"%)",sep=""),
paste("Modified ES (",p*100,"%)",sep="")
)
if(column == 1) {
resultingtable = data.frame(Value = z, row.names = znames)
}
else {
nextcolumn = data.frame(Value = z, row.names = znames)
resultingtable = cbind(resultingtable, nextcolumn)
}
}
colnames(resultingtable) = columnnames
ans = base::round(resultingtable, digits)
ans
# For example:
# > table.DownsideRisk(monthlyReturns.ts,Rf=.04/12)
# Actual S&P500TR
# Semi Deviation 0.020849116 0.02913679
# Gain Deviation 0.023009623 0.01975342
# Loss Deviation 0.007740678 0.01344530
# Downside Deviation (MAR=10%) 0.019826422 0.02944389
# Downside Deviation (Rf=4%) 0.016275404 0.02713448
# Downside Deviation (0%) 0.014248969 0.02642777
# Maximum Drawdown -0.052021280 -0.04080700
}
###############################################################################
# R (http://r-project.org/) Econometrics for Performance and Risk Analysis
#
# Copyright (c) 2004-2020 Peter Carl and Brian G. Peterson
#
# This R package is distributed under the terms of the GNU Public License (GPL)
# for full details see the file COPYING
#
# $Id$
#
###############################################################################
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.