Nothing
`BCPNN` <-
function(DATABASE, RR0 = 1, MIN.n11 = 1, DECISION = 1,
DECISION.THRES = 0.05, RANKSTAT = 1, MC = FALSE,
NB.MC = 10000) {
DATA <- DATABASE$data
N <- DATABASE$N
L <- DATABASE$L
n11 <- DATA[,1]
n1. <- DATA[,2]
n.1 <- DATA[,3]
n10 <- n1. - n11
n01 <- n.1 - n11
n00 <- N - (n11+n10+n01)
E <- n1. * n.1 / N # les counts attendus
if(MIN.n11 > 1) {
E <- E[n11 >= MIN.n11]
n1. <- n1.[n11 >= MIN.n11]
n.1 <- n.1[n11 >= MIN.n11]
n10 <- n10[n11 >= MIN.n11]
n01 <- n01[n11 >= MIN.n11]
n00 <- n00[n11 >= MIN.n11]
# LL <- data.frame(drugs=L[,1],events=L[,2],n11)
# LL1 <- LL[,1][n11 >= MIN.n11]
# LL2 <- LL[,2][n11 >= MIN.n11]
# rm(list="L")
# L <- data.frame(LL1,LL2)
L <- L[n11 >= MIN.n11,]
n11 <- n11[n11 >= MIN.n11]
}
Nb.Cell <- length(n11)
if (MC == FALSE) {
post.H0 <- matrix(nrow=Nb.Cell,ncol=length(RR0))
p1 <- 1 + n1.
p2 <- 1 + N - n1.
q1 <- 1 + n.1
q2 <- 1 + N - n.1
r1 <- 1 + n11
r2b <- N - n11 -1 + (2+N)^2/(q1*p1)
EICb <- log(2)^(-1) * (digamma(r1) - digamma(r1+r2b) - (digamma(p1) - digamma(p1+p2) + digamma(q1) - digamma(q1+q2)))
VICb <- log(2)^(-2) * (trigamma(r1) - trigamma(r1+r2b) + (trigamma(p1) - trigamma(p1+p2) + trigamma(q1) - trigamma(q1+q2)))
post.H0 <- pnorm(log(RR0),EICb,sqrt(VICb))
# Calculation of the Lower Bound
LB <- qnorm(0.025,EICb,sqrt(VICb))
}
if (MC == TRUE) { # Advanced option MC
n1. <- n11 + n10
n.1 <- n11 + n01
Nb_Obs <- length(n11)
## Nouvelles priors
q1. <- (n1. +.5)/(N +1)
q.1 <- (n.1 +.5)/(N +1)
q.0 <- (N - n.1 +.5)/(N +1)
q0. <- (N - n1. +.5)/(N +1)
a.. <- .5/(q1.*q.1) ## le .5 devrait pouvoir être changé
a11 <- q1.*q.1* a..
a10 <- q1.*q.0* a..
a01 <- q0.*q.1* a..
a00 <- q0.*q.0* a..
g11 <- a11 + n11
g10 <- a10 + n10
g01 <- a01 + n01
g00 <- a00 + n00
g1. <- g11 + g10
g.1 <- g11 + g01
post.H0 <- vector(length=length(n11))
LB <- vector(length=length(n11))
quantile <- vector("numeric",length=length(n11))
for (m in 1 : length(n11)){
p <- rdirichlet(NB.MC,c(g11[m],g10[m],g01[m],g00[m]))
p11 <- p[,1]
p1. <- p11 + p[,2]
p.1 <- p11 + p[,3]
IC_monte <- log(p11/(p1.* p.1))
temp <- IC_monte < log(RR0)
post.H0[m] <- sum(temp)/NB.MC
LB[m] <- sort(IC_monte)[round(NB.MC * 0.025)]
}
rm(p11,p1.,p.1,IC_monte,temp)
gc()
}
if (RANKSTAT==1) RankStat <- post.H0
if (RANKSTAT==2) RankStat <- LB
if (RANKSTAT==1) {
FDR <- (cumsum(post.H0[order(post.H0)]) / (1:length(post.H0)))
FNR <- rev(cumsum((1-post.H0)[order(1-post.H0)])) / (Nb.Cell - 1:length(post.H0))
Se <- cumsum((1-post.H0)[order(post.H0)]) / (sum(1-post.H0))
Sp <- rev(cumsum(post.H0[order(1-post.H0)])) / (Nb.Cell - sum(1-post.H0))
}
if (RANKSTAT==2) {
FDR <- (cumsum(post.H0[order(LB,decreasing=TRUE)]) / (1:length(post.H0)))
FNR <- rev(cumsum((1-post.H0)[order(1-LB,decreasing=TRUE)])) / (Nb.Cell - 1:length(post.H0))
Se <- cumsum((1-post.H0)[order(LB,decreasing=TRUE)]) / (sum(1-post.H0))
Sp <- rev(cumsum(post.H0[order(1-LB,decreasing=TRUE)])) / (Nb.Cell - sum(1-post.H0))
}
# Calculation of the number of signals according to the decision rule (pp/FDR/Nb of Signals)
if (DECISION == 1) Nb.signaux <- sum(FDR <= DECISION.THRES)
if (DECISION == 2) Nb.signaux <- min(DECISION.THRES,Nb.Cell)
if (DECISION == 3) {
if (RANKSTAT==1) Nb.signaux <- sum(RankStat <= DECISION.THRES, na.rm = TRUE)
if (RANKSTAT==2) Nb.signaux <- sum(RankStat >= DECISION.THRES, na.rm = TRUE)
}
############################ SORTIE DE LA FONCTION #############################
RES <- vector(mode="list")
#RES$LIBEL <- L
#colnames(RES$LIBEL) <- c("DRUG","EVENT")
#RES$param.D <- param.D
RES$INPUT.PARAM <- data.frame(RR0,MIN.n11,DECISION,DECISION.THRES,RANKSTAT)
#colnames(RES$INPUT.PARAM) <- c("RR0","MIN.n11","DECISION","DECISION.THRES","RANKSTAT")
# Presentation of the statistics calculated for each couple
##RES$STATISTIC <- data.frame(n11,post.H0,LB)
##rownames(RES$STATISTIC) <- paste(L[,1],L[,2]) # liste des libellés ingénue
##colnames(RES$STATISTIC) <- c("count","postH0","Lower Bound")
# STATISTICAL VALUE TO BE CONSIDERED (used in function compare)
#RES$COMPARE <- vector(mode="list")
#RES$COMPARE$RANKSTAT <- RANKSTAT
#RES$COMPARE$STAT <- RankStat
# SIGNALS RESULTS and presentation
if (RANKSTAT==1) {
RES$ALLSIGNALS <- data.frame( L[,1][order(RankStat)],
L[,2][order(RankStat)],
n11[order(RankStat)],
E[order(RankStat)],
RankStat[order(RankStat)],
(n11/E)[order(RankStat)],
n1.[order(RankStat)],
n.1[order(RankStat)],
FDR, FNR, Se, Sp )
colnames(RES$ALLSIGNALS) <- c("drug code","event effect","count","expected count","post.H0",
"n11/E","drug margin","event margin","FDR","FNR","Se","Sp")
}
if (RANKSTAT==2) {
RES$ALLSIGNALS <- data.frame( L[,1][order(RankStat, decreasing=TRUE)],
L[,2][order(RankStat, decreasing=TRUE)],
n11[order(RankStat, decreasing=TRUE)],
E[order(RankStat,decreasing=TRUE)],
RankStat[order(RankStat,decreasing=TRUE)],
(n11/E)[order(RankStat,decreasing=TRUE)],
n1.[order(RankStat,decreasing=TRUE)],
n.1[order(RankStat,decreasing=TRUE)],
FDR, FNR, Se, Sp,
post.H0[order(RankStat,decreasing=TRUE)] )
colnames(RES$ALLSIGNALS) <- c("drug code","event effect","count","expected count","Q_0.025(log(IC))",
"n11/E","drug margin","event margin","FDR","FNR","Se","Sp","postH0")
}
# List of Signals generated according to the DECISION.THRES
RES$SIGNALS <- RES$ALLSIGNALS[1:Nb.signaux,]
# FDR,FNR,Se,Sp
#RES$OpChar <- data.frame(FDR,FNR,Se,Sp)
#rownames(RES$OpChar) <- paste(RES$ALLSIGNALS[,1],RES$ALLSIGNALS[,2])
# Number of signals
RES$NB.SIGNALS <- Nb.signaux
RES
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.