Nothing
#' Population-level diagnostics
#'
#' @description
#' phenotypeR diagnostics on the cohort of input with relation to a denomination
#' population. Diagnostics include:
#'
#' * Incidence
#' * Prevalence
#'
#' @inheritParams cohortDoc
#' @inheritParams populationSampleDoc
#'
#' @return A summarised result
#' @export
#'
#' @examples
#' \donttest{
#' library(PhenotypeR)
#' library(dplyr)
#'
#' cdm <- mockPhenotypeR()
#'
#' dateStart <- cdm$my_cohort |>
#' summarise(start = min(cohort_start_date, na.rm = TRUE)) |>
#' pull("start")
#' dateEnd <- cdm$my_cohort |>
#' summarise(start = max(cohort_start_date, na.rm = TRUE)) |>
#' pull("start")
#'
#' result <- cdm$my_cohort |>
#' populationDiagnostics(populationDateRange = c(dateStart, dateEnd))
#'
#' CDMConnector::cdmDisconnect(cdm = cdm)
#' }
populationDiagnostics <- function(cohort,
populationSample = 1000000,
populationDateRange = as.Date(c(NA, NA))) {
cohort <- omopgenerics::validateCohortArgument(cohort = cohort)
checksPopulationDiagnostics(populationSample, populationDateRange)
cdm <- omopgenerics::cdmReference(cohort)
cohortName <- omopgenerics::tableName(cohort)
cli::cli_bullets(c("*" = "{.strong Creating denominator for incidence and prevalence}"))
denominatorTable <- omopgenerics::uniqueTableName()
# add population sampling
if(!is.null(populationSample)){
cli::cli_bullets(c("*" = "{.strong Sampling person table to {populationSample}}"))
if(is.na(populationDateRange[[1]]) && is.na(populationDateRange[[2]])){
cdm$person <- cdm$person |>
dplyr::slice_sample(n = populationSample)
} else {
# sample within date range
if(!is.na(populationDateRange[[1]]) & is.na(populationDateRange[[2]])){
cdm$person <- cdm$person |>
dplyr::inner_join(cdm$observation_period|>
dplyr::filter(.data$observation_period_start_date >=
!!populationDateRange[[1]]) |>
dplyr::select("person_id") |>
dplyr::distinct(),
by = "person_id") |>
dplyr::slice_sample(n = populationSample)
} else if(is.na(populationDateRange[[1]]) & !is.na(populationDateRange[[2]])){
cdm$person <- cdm$person |>
dplyr::inner_join(cdm$observation_period|>
dplyr::filter(.data$observation_period_start_date <=
!!populationDateRange[[2]]) |>
dplyr::select("person_id") |>
dplyr::distinct(),
by = "person_id") |>
dplyr::slice_sample(n = populationSample)
} else {
cdm$person <- cdm$person |>
dplyr::inner_join(cdm$observation_period|>
dplyr::filter(.data$observation_period_start_date >=
!!populationDateRange[[1]],
.data$observation_period_start_date <=
!!populationDateRange[[2]]) |>
dplyr::select("person_id") |>
dplyr::distinct(),
by = "person_id") |>
dplyr::slice_sample(n = populationSample)
}
}
cdm$person <- cdm$person |>
dplyr::compute(temporary = TRUE)
}
cdm <- IncidencePrevalence::generateDenominatorCohortSet(
cdm = cdm,
name = denominatorTable,
ageGroup = list(c(0, 150),
c(0, 17),
c(18, 64),
c(65, 150)),
sex = c("Both", "Male", "Female"),
daysPriorObservation = c(0, 365),
requirementInteractions = FALSE,
cohortDateRange = populationDateRange
)
results <- list()
cli::cli_bullets(c("*" = "{.strong Estimating incidence}"))
results[["incidence"]] <- IncidencePrevalence::estimateIncidence(
cdm = cdm,
denominatorTable = denominatorTable,
outcomeTable = cohortName,
interval = c("years", "overall"),
repeatedEvents = FALSE,
outcomeWashout = Inf,
completeDatabaseIntervals = FALSE)
cli::cli_bullets(c("*" = "{.strong Estimating prevalence}"))
results[["prevalence"]] <- IncidencePrevalence::estimatePeriodPrevalence(
cdm = cdm,
denominatorTable = denominatorTable,
outcomeTable = cohortName,
interval = c("years", "overall"),
completeDatabaseIntervals = TRUE,
fullContribution = FALSE)
results <- results |>
vctrs::list_drop_empty() |>
omopgenerics::bind()
newSettings <- results |>
omopgenerics::settings() |>
dplyr::mutate("phenotyper_version" = as.character(utils::packageVersion(pkg = "PhenotypeR")),
"diagnostic" = "populationDiagnostics",
"populationDateStart" = populationDateRange[1],
"populationDateEnd" = populationDateRange[2],
"populationSample" = populationSample)
results <- results |>
omopgenerics::newSummarisedResult(settings = newSettings)
return(results)
}
checksPopulationDiagnostics <- function(populationSample, populationDateRange, call = parent.frame()){
omopgenerics::assertNumeric(populationSample, integerish = TRUE, min = 1, null = TRUE, length = 1, call = call)
omopgenerics::assertDate(populationDateRange, na = TRUE, length = 2, call = call)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.