| abalone | Abalone data set | 
| aggregate-methods | Functions to perform a calculation on multiple values and... | 
| aic | AIC methods for Madlib regression objects | 
| arith-methods | Arithmetic Operators for 'db.obj' objects | 
| arraydb.to.arrayr | Convert strings extracted from database into arrays | 
| array.len | Get the length of the array in an array column | 
| as.db.data.frame-methods | Convert other objects into a 'db.data.frame' object | 
| as.environment | Evaluate expressions within the context of a database table... | 
| as.factor-methods | Convert one column of a 'db.obj' object into a categorical... | 
| by-methods | Apply a Function to a 'db.data.frame' Split by column(s) | 
| cbind2 | Combine two 'db.obj' Objects by Columns | 
| clean.madlib.temp | Delete all the result tables created during calculations of... | 
| coef | Extract model coefficients for Madlib regression objects | 
| compare-methods | Comparison Operators for 'db.obj' objects | 
| connection-info | Utilities for extracting related information about a database... | 
| conn.eql | Check whether two connections are the same | 
| conn.id | Find out the connection ID of a 'db.obj' object | 
| content | Print the content of a 'db.obj' object | 
| crossprod | Compute the matrix product of 'X^T' and 'Y'. | 
| db.connect | Create a connection to a database | 
| db.data.frame | Create a 'db.data.frame' object pointing to a table/view in... | 
| db.data.frame-class | Class '"db.data.frame"' | 
| db.disconnect | Disconnect a connection to a database | 
| db.existsObject | Test whether an object exists in the database | 
| db.list | List all the currently active connections with their... | 
| db.obj-class | Abstract Class '"db.obj"' | 
| db.objects | List all the existing tables/views in a database with their... | 
| db.q | Execute a SQL query | 
| db.Rcrossprod-class | Class '"db.Rcrossprod"' | 
| db.Rquery-class | Class '"db.Rquery"' and its sub-class 'db.Rview-class' | 
| db.search.path | Display or set the search path (i.e. default schemas) for a... | 
| db.table-class | Class '"db.table"' | 
| db.view-class | Class '"db.view"' | 
| delete-methods | Safely delete a 'db.obj' object or a table/view in the... | 
| dim-methods | Dimension of a table | 
| eql-methods | Test if two objects point to the same table | 
| extract-replace-methods | Extract or replace a part of 'db.obj' objects | 
| func-methods | Mathematical functions that take 'db.obj' objects as the... | 
| generic.bagging | This function runs boostrap aggregating for a given training... | 
| generic.cv | Generic cross-validation for supervised learning algorithms | 
| getTree.rf.madlib | MADlib wrapper function for Random Forest | 
| groups | Summary information for Logistic Regression output | 
| ifelse | Conditional Element Selection | 
| is.db.data.frame | Check if an object is of type 'db.data.frame' | 
| is.factor-methods | Detect whether a 'db.obj' object is a categorical object | 
| is.na-methods | Query if the entries in a table are NULL | 
| key | Get or set the primary key for a table | 
| logical-methods | Logical operations for 'db.obj' objects | 
| madlib.arima | Wrapper for MADlib's ARIMA model fitting function | 
| madlib.elnet | MADlib's elastic net regularization for generalized linear... | 
| madlib.glm | Generalized Linear Regression by MADlib in databases | 
| madlib.kmeans | Wrapper for MADlib's Kmeans clustering function | 
| madlib.lda | Wrapper for MADlib's Latent Dirichilet Allocation | 
| madlib.lm | Linear regression with grouping support, heteroskedasticity | 
| madlib.randomForest | MADlib wrapper function for Random Forest | 
| madlib.rpart | MADlib wrapper function for Decision Tree | 
| madlib.summary | Data summary function | 
| madlib.svm | Support Vector Machine with regression and novelty detection | 
| margins | Compute the marginal effects of regression models | 
| merge-methods | Computing a join on two tables | 
| na.action | Functions for filtering 'NA' values in data | 
| names-methods | The Names of an object | 
| null.data | A Data Set with lots of 'NA' values | 
| perplexity.lda.madlib | Perplexity of LDA predictions | 
| pivotalr | Graphical interface for PivotalR based upon shiny | 
| pkg-package | An R font-end to PostgreSQL and Greenplum database, and... | 
| plot.dt.madlib | Plot the result of madlib.rpart | 
| predict | Generate the 'db.Rquery' object that can calculate the... | 
| predict.arima.madlib | Forecast from MADlib's ARIMA fits | 
| predict.bagging.model | Make predictions using the result of 'generic.bagging' | 
| predict.dt.madlib | Compute the predictions of the model produced by madlib.rpart | 
| predict.elnet.madlib | Predict using the regression result of elastic net... | 
| predict.lda.madlib | Prediction function for MADlib's LDA models | 
| predict.rf.madlib | Compute the predictions of the model produced by... | 
| preview | Read the actual data stored in a table of database. | 
| print.arima.madlib | Display results of ARIMA fitting of 'madlib.arima' | 
| print.dt.madlib | Print the result of madlib.rpart | 
| print.elnet.madlib | Display the results from madlib.elnet function in a pretty... | 
| print.lm.madlib | Display results of linear regression | 
| print.logregr.madlib | Display results of logistic regression | 
| print-methods | Display the connection information associated with a 'db'... | 
| print.none.obj | Function used in GUI to print absolutely nothing | 
| print.rf.madlib | Print the result of madlib.randomForest | 
| print.summary.madlib | Display the results from summary function in a pretty format | 
| residuals | Residuals methods for Madlib regression objects | 
| row_actions | Compute the sum or mean of all columns in one row of a table | 
| sample-methods | Methods for sampling rows of data from a table/view randomly | 
| scale-methods | Scaling and centering of tables | 
| sort-methods | Sort a table or view by a set of columns | 
| subset-methods | Extract a subset of a table or view | 
| summary.arima.madlib | Summary information for MADlib's ARIMA model | 
| summary.elnet.madlib | Summary information for Elastic net regularization output | 
| summary.lm.madlib | Summary information for Linear Regression output | 
| summary.logregr.madlib | Summary information for Logistic Regression output | 
| text.dt.madlib | Add labels onto the figure generated by plot.dt.madlib | 
| type-cast | Cast columns of 'db.obj' objects to other types | 
| unique-methods | The Unique of an object | 
| vcov | vcov methods for Madlib regression objects | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.