Nothing
################################################################################
### #function to create cost.mat from landscape and populations coordinates
################################################################################
################################################################################
#'Calculates proportion of shared alleles per pairs of populations
#'
#'@param gi a genind object with at least two populations
#'@return a matrix of proportion of shared alleles between populations
#'@description Calculates proportion of shared alleles per pairs of populations based on the minima of allele frequency for each allel (then summed and averaged over loci). Returns a similarity matrix (upper diagonal of the pairwise matrix.
#' @export
pairwise.propShared <- function(gi)
{
n.pops <- length(unique(pop(gi)))
allPairs <- combn(1:n.pops, 2)
gen.mat<- matrix(0, nrow=n.pops, ncol=n.pops)
pops <- seppop(gi)
pspop <- function(x)
{
pp <- seppop(x)
p1 <- pp[[1]]
p2 <- pp[[2]]
na <- ncol(p1@tab)
maf <- NA
m1 <- colMeans(p1@tab[,], na.rm=TRUE)/2
m2 <- colMeans(p2@tab[,], na.rm=TRUE)/2
m12 <- apply(rbind(m1,m2), 2, min, na.rm=TRUE)
lfl <- NA
facs <- levels(p1@loc.fac)
for (i in 1:length(locNames(p1))) lfl[i] <- sum(m12[p1@loc.fac==facs[i]])
mean(lfl, na.rm=TRUE)
}
for (i in 1:ncol(allPairs))
{
np1 <- allPairs[1,i]
np2 <- allPairs[2,i]
p12 <- repool(pops[[np1]], pops[[np2]])
ps <- pspop(p12)
gen.mat[np1,np2] <- ps
gen.mat[np2,np1] <- ps
}
la <- levels(pop(gi))
colnames(gen.mat) <- rownames(gen.mat) <- la
return(as.dist(gen.mat))
}
#######################
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.