Description Usage Arguments Details Value References See Also Examples
A generic function to calculate some F-statistics and nucleotide/haplotype diversities.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | ## S4 method for signature 'GENOME'
F_ST.stats(
object,
new.populations=FALSE,
subsites=FALSE,
detail=TRUE,
mode="ALL",
only.haplotype.counts=FALSE,
FAST=FALSE
)
## S4 method for signature 'GENOME'
get.diversity(object,between=FALSE)
## S4 method for signature 'GENOME'
get.F_ST(object,mode=FALSE,pairwise=FALSE)
|
object |
An object of class |
new.populations |
list of populations. default: |
subsites |
|
detail |
detail statistics. Note: slower! |
between |
|
mode |
mode= |
only.haplotype.counts |
only calculate the haplotype counts |
FAST |
if |
pairwise |
show paiwise comparisons. default: |
If FAST
is switched on, this module only calculates nuc.diversity.within
, hap.diversity.within
, haplotype.F_ST
, nucleotide.F_ST
and pi
.
Note:
1) The nucleotide diversities have to be devided by the size of region considered (e.g. GENOME@n.sites
) to give diversities per site.
2) When missing or unknown nucleotides are included (include.unknown=TRUE) those sites are completely deleted in case of haplotype based statistics.
3) The function detail.stats(...,site.FST=TRUE)
will compute SNP specific FST values which are then
stored in the slot GENOME.class@region.stats@site.FST
.
4) We recommend to use mode="nucleotide"
in case you have many unknowns included in your dataset.
Slot | Reference | Description | |
1. | haplotype.F_ST | [1] | Fixation Index based on haplotype frequencies |
2. | nucleotide.F_ST | [1] | Fixation Index based on minor.allele frequencies |
3. | Nei.G_ST | [2] | Nei's Fixation Index |
4. | Hudson.G_ST | [3] | see reference ... |
5. | Hudson.H_ST | [3] | see reference ... |
6. | Hudson.K_ST | [3] | see reference ... |
7. | nuc.diversity.within | [1,5] | Nucleotide diversity (within the population) |
8. | hap.diversity.within | [1] | Haplotype diversity (within the population) |
9. | Pi | [4] | Nei's diversity (within the population) |
10. | hap.F_ST.vs.all | [1] | Fixation Index for each population against all other individuals (haplotype) |
11. | nuc.F_ST.vs.all | [1] | Fixation Index for each population against tall other individuals (nucleotide) |
12. | hap.diversity.between | [1] | Haplotype diversities between populations |
13. | nuc.diversity.between | [1,5] | Nucleotide diversities between populations |
14. | nuc.F_ST.pairwise | [1] | Fixation Index for every pair of populations (nucleotide) |
15. | hap.F_ST.pairwise | [1] | Fixation Index for every pair of populations (haplotype) |
16. | Nei.G_ST.pairwise | [2] | Fixation Index for every pair of populations (Nei) |
17. | region.stats | an object of class "region.stats" for detailed statistics | |
[1] Hudson, R. R., M. Slatkin, and W.P. Maddison (1992). Estimating levels of gene flow from DNA sequence data. Gentics 13(2),583-589
[2] Nei, M. (1973). Analysis of gene diversity in subdivided populations. Proc.Natl. Acad. Sci. USA 70: 3321-3323
[3] Hudson, R. R., Boos, D.D. and N. L. Kaplan (1992). A statistical test for detecting population subdivison. Mol. Biol. Evol. 9: 138-151.
[4] Nei, M. (1987). Molecular Evolutionary Genetics. Columbia Univ. Press, New York.
[5] Wakeley, J. (1996).The Variance of Pairwise Nucleotide Differences in Two Populations with Migration.
THEORETICAL POPULATION BIOLOGY. 49, 39-57.
# methods?F_ST.stats.2 #F_ST.stats.2
1 2 3 4 5 6 7 8 9 10 11 | # GENOME.class <- readData("\home\Alignments")
# GENOME.class
# GENOME.class <- F_ST.stats(GENOME.class)
# GENOME.class <- F_ST.stats(GENOME.class,list(1:4,5:10),subsites="syn")
# GENOME.class <- F_ST.stats(GENOME.class,list(c("seq1","seq5","seq3"),c("seq2","seq8")))
# show the result:
# get.F_ST(GENOME.class)
# get.F_ST(GENOME.class, pairwise=TRUE)
# get.diversity(GENOME.class, between=TRUE)
# GENOME.class@Pi --> population specific view
# GENOME.class@region.stats
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.