| find.signature.genes | R Documentation | 
Find the signature genes for each group of cell/spots based on coembedding distance and expression ratio.
find.signature.genes(
  seu,
  distce.assay = "distce",
  ident = NULL,
  expr.prop.cutoff = 0.1,
  assay = NULL,
  genes.use = NULL
)
| seu | a Seurat object with coembedding in the reductions slot wiht component name reduction. | 
| distce.assay | an optional character, specify the assay name that constains distance matrix beween cells/spots and features, default as 'distce' (distance of coembeddings). | 
| ident | an optional character in columns of metadata, specify the group of cells/spots. Default as NULL, use Idents as the group. | 
| expr.prop.cutoff | an optional postive real ranging from 0 to 1, specify cutoff of expression proportion of features, default as 0.1. | 
| assay | an optional character, specify the assay in seu, default as NULL, representing the default assay in seu. | 
| genes.use | an optional string vector, specify genes as the signature candidates. | 
In each data.frame object of the returned value, the row.names are gene names, and these genes are sorted by decreasing order of 'distance'. User can define the signature genes as top n genes in distance and that the 'expr.prop' larger than a cutoff. We set the cutoff as 0.1.
return a list with each component a data.frame object having two columns: 'distance' and 'expr.prop'.
None
None
library(Seurat)
data(pbmc3k_subset)
pbmc3k_subset <- pdistance(pbmc3k_subset, reduction='ncfm')
df_list_rna <- find.signature.genes(pbmc3k_subset)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.