Nothing
#' @title RReliefF
#' @description Mode selection by RReliefF. The purpose of this function
#' is to select the part modes with similar characteristics to the observed time series
#' from the modes generated by the quantum walk. And it is based on the data model.
#' @usage qwdap.rrelieff(real, ctqw, index, num, plotting)
#' @param real the real series observed.
#' @param ctqw the 'CTQW' object.
#' @param index the index of the data for mode selection.
#' @param num the number of series required.
#' @param plotting whether to plot.
#'
#' @return a 'QWMS' object.
#'
#' @details The 'QWMS' object include the original time series and the modes generated by
#' quantum walks.
#' @import CORElearn
#' @export qwdap.rrelieff
#'
#' @examples
#' data("traffic.qw")
#' data("trafficflow")
#' res.rrelieff <- qwdap.rrelieff(trafficflow,traffic.qw,1,30,TRUE)
#'
qwdap.rrelieff<-function(real,ctqw,index,num = -1,plotting = FALSE){
# library(CORElearn)
# get the data
if(!inherits(ctqw, 'CTQW')){
stop("The parameter 'ctqw' is not a 'CTQW' object.")
}
if(nrow(real)!=ctqw$lens){
stop("The row of 'real' is not equal to the 'lens' of 'ctqw'.")
}
if(!is.data.frame(real)){
real = as.data.frame(real)
}
proc.data <- cbind(real[index],as.data.frame(ctqw$ctqw[,index,]))
res <- attrEval(1,proc.data,estimator = "RReliefFbestK")
res <- res[order(abs(res),decreasing = T)]
res <- t(data.frame(res))
rownames(res)<-"importance"
if(plotting){
plot(x=c(1:ncol(res)),y=abs(res[1,]),type="p",lwd=2,xlab="",ylab="")
}
if(num != -1){
res <- subset(res, select = colnames(res)[1:num])
}
res<-list(real=as.matrix(real[index]), ctqw=ctqw$ctqw[,index,], index = index,
method = "RReliefFbestK", variate = colnames(res),importance=res)
res<-structure(res,class="QWMS")
return(res)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.