tests/testthat/test-pk.test.R

#' Test for pk.test
#' 
#' 
#' 
#' @srrstats {G5.1, G5.5} data sets are generated using simple functions with 
#'                        fixed seed
#' @srrstats {G5.2,G5.2a,G5.2b} all the error and warning messages are tested
#' @srrstats {G5.4,G5.4a} correctness tested on simple cases
#' @srrstats {G5.8, G5.8a,G5.8b,G5.8c} edge conditions
#' 
#' @noRd
library(testthat)

## "Tests for pk.test function"

# Test 1: Error on Invalid x Input
test_that("Error on invalid x input", {
   
   set.seed(123)
   expect_error(pk.test(x = "Not matrix", rho = 0.5),
                "x must be numeric", fixed=TRUE)
   
   expect_error(pk.test(x = rnorm(50), rho = 0.5),
         "x must be a matrix or a data.frame with dimension greater
                     than 1.", 
         fixed=TRUE)
   
   # NA in the data
   dat <- matrix(rnorm(100),ncol=2)
   dat[1,] <- NA 
   expect_error(pk.test(x = dat, rho = 0.8), 
                'There are missing values in x!', fixed=TRUE)
   
   # Inf or Nan in the data
   dat <- matrix(rnorm(100),ncol=2)
   dat[1,] <- Inf 
   expect_error(pk.test(x = dat, rho = 0.8), 
                'There are undefined values in x, that is Nan, Inf, -Inf', 
                fixed=TRUE)
})

# Test 2: Error on Invalid Quantile Input
test_that("Error on invalid Quantile input", {
   
   set.seed(123)
   expect_error(pk.test(x = matrix(rnorm(100), ncol=2), rho = 0.5, 
                        Quantile = 1.1), "Quantile must be in (0,1]", 
                fixed=TRUE)
   expect_error(pk.test(x = matrix(rnorm(100), ncol=2), rho = 0.5, 
                        Quantile = -1), "Quantile must be in (0,1]", 
                fixed=TRUE)
})

# Test 3: Error on Invalid rho Input
test_that("Error on invalid rho input", {
   set.seed(123)
   expect_error(pk.test(x = matrix(rnorm(100), ncol=2), rho = -0.1),
                "rho must be in (0,1)", fixed=TRUE)
   
   expect_error(pk.test(x = matrix(rnorm(100), ncol=2), rho = 2),
                "rho must be in (0,1)", fixed=TRUE)
})

# Test 4: Handling Vector x Input
test_that("Handle vector x input correctly", {
   
   set.seed(123)
   expect_s4_class(pk.test(x = matrix(rnorm(100), ncol = 2), rho = 0.5), 
                   "pk.test")
   expect_s4_class(pk.test(x = data.frame(matrix(rnorm(100), ncol = 2)), 
                           rho = 0.5), "pk.test")
})

# Test 5: Main Functionality with Valid Inputs
test_that("Functionality with valid inputs", {
   
   size <- 100
   d <- 3
   
   # Test does not reject uniformity
   set.seed(123)
   x_sp <- sample_hypersphere(d, n_points=size)
   unif_test <- pk.test(x_sp,rho=0.8)
   
   expect_s4_class(unif_test, "pk.test")
   expect_true(is.numeric(unif_test@Un))
   expect_true(is.numeric(unif_test@Vn))
   expect_false(unif_test@H0_Un)
   
   # Test reject uniformity
   set.seed(123)
   x_sp <- rpkb(n = size, mu = c(1,0,0), rho = 0.9)$x
   unif_test <- pk.test(x_sp,rho=0.9)
   
   expect_s4_class(unif_test, "pk.test")
   expect_true(unif_test@H0_Un)
   
   # test show method
   output <- capture.output(show(unif_test))
   expect_true(any(grepl("H0 is rejected: ", output)))
   expect_true(any(grepl("Statistic Un: ", output)))
   expect_true(any(grepl("Statistic Vn: ", output)))
   
   # test summary method
   s <- summary(unif_test)
   expect_type(s$summary_tables, "list")
   expect_equal(nrow(s$test_results), 2)
   
})

Try the QuadratiK package in your browser

Any scripts or data that you put into this service are public.

QuadratiK documentation built on Oct. 29, 2024, 5:08 p.m.