Nothing
## ----setup, include=FALSE-----------------------------------------------------
options(prompt = 'R> ', continue = '+ ')
options(ggrepel.max.overlaps = Inf)
def.chunk.hook <- knitr::knit_hooks$get("chunk")
knitr::knit_hooks$set(chunk = function(x, options) {
x <- def.chunk.hook(x, options)
paste0("\n \\", "footnotesize","\n\n", x, "\n\n \\normalsize")
})
knitr::opts_chunk$set(
fig.path = "figures/"
)
## ----eval = FALSE-------------------------------------------------------------
# install.packages("RGCCA")
## -----------------------------------------------------------------------------
RGCCA::available_methods()
## -----------------------------------------------------------------------------
library("RGCCA")
data("Russett")
colnames(Russett)
## -----------------------------------------------------------------------------
A <- list(
Agriculture = Russett[, c("gini", "farm", "rent")],
Industrial = Russett[, c("gnpr", "labo")],
Politic = Russett[, c("inst", "ecks", "death", "demostab", "dictator")])
lab <- factor(
apply(Russett[, 9:11], 1, which.max),
labels = c("demost", "demoinst", "dict")
)
## -----------------------------------------------------------------------------
C <- matrix(c(0, 0, 1,
0, 0, 1,
1, 1, 0), 3, 3)
C
## -----------------------------------------------------------------------------
fit <- rgcca(blocks = A, connection = C,
tau = 1, ncomp = 2,
scheme = "factorial",
scale = TRUE,
scale_block = FALSE,
comp_orth = TRUE,
verbose = FALSE)
## -----------------------------------------------------------------------------
summary(fit)
## ----fig-weight, fig.height = 12, fig.width=18, fig.cap = 'Block-weight vectors of a fitted RGCCA model.', fig.pos = "H"----
plot(fit, type = "weight", block = 1:3, comp = 1,
display_order = FALSE, cex = 2)
## ----fig-sample1, fig.align='center', fig.cap = '\\label{fig:sample}Graphical display of the countries by drawing the block component of the first block against the block component of the second block, colored according to their political regime.', fig.height = 12, fig.width=18, fig.pos = "H"----
plot(fit, type = "sample",
block = 1:2, comp = 1,
resp = lab, repel = TRUE, cex = 2)
## ----fig-ave, fig.align='center', fig.cap = 'Average variance explained of the different blocks.', fig.height = 8, fig.width=18, fig.pos = "H"----
plot(fit, type = "ave", cex = 2)
## ----fig-cor-circle, fig.align='center', fig.cap = 'Correlation circle associated with the first two components of the first block.', fig.height = 12, fig.width=18, fig.pos = "H"----
plot(fit, type = "cor_circle", block = 1, comp = 1:2,
display_blocks = 1:3, cex = 2)
## ----fig-biplot1, fig.align='center', fig.cap = 'Biplot associated with the first two components of the first block.', fig.height = 12, fig.width=18, fig.pos = "H"----
plot(fit, type = "biplot", block = 1,
comp = 1:2, repel = TRUE,
resp = lab, cex = 2,
show_arrow = TRUE)
## ----size = "tiny"------------------------------------------------------------
summary(boot_out, block = 1:3, ncomp = 1)
## ----fig-boot1, fig.cap = 'Bootstrap confidence intervals for the block-weight vectors.', fig.height = 12, fig.width=18, fig.pos = "H"----
plot(boot_out, type = "weight",
block = 1:3, comp = 1,
display_order = FALSE, cex = 2,
show_stars = TRUE)
## -----------------------------------------------------------------------------
fit <- rgcca(blocks = A, connection = C,
tau = "optimal", scheme = "factorial")
## -----------------------------------------------------------------------------
fit$call$tau
## -----------------------------------------------------------------------------
set.seed(0)
perm_out <- rgcca_permutation(blocks = A, connection = C,
par_type = "tau",
par_length = 10,
n_cores = 1,
n_perms = 10)
## ----width=30-----------------------------------------------------------------
summary(perm_out)
## ----fig-permutation, fig.height = 12, fig.width=18, fig.pos = "H", fig.cap = "Values of the objective function of RGCCA against the sets of tuning parameters, triangles correspond to evaluations on non-permuted datasets."----
plot(perm_out, cex = 2)
## -----------------------------------------------------------------------------
fit <- rgcca(perm_out)
## -----------------------------------------------------------------------------
fit.mcoa <- rgcca(blocks = A, method = "mcoa", ncomp = 2)
## -----------------------------------------------------------------------------
summary(fit.mcoa)
## ----fig-biplot2, fig.align='center', fig.cap = 'Biplot of the countries obtained by crossing the two first components of the superblock. Individuals are colored according to their political regime and variables according to their block membership.', fig.height = 12, fig.width=18, fig.pos = "H"----
plot(fit.mcoa, type = "biplot",
block = 4, comp = 1:2,
response = lab,
repel = TRUE, cex = 2)
## ----eval = FALSE-------------------------------------------------------------
# if (!("gliomaData" %in% rownames(installed.packages()))) {
# destfile <- tempfile()
# download.file("http://biodev.cea.fr/sgcca/gliomaData_0.4.tar.gz", destfile)
# install.packages(destfile, repos = NULL, type = "source")
# }
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(eval = "gliomaData" %in% rownames(installed.packages()))
## -----------------------------------------------------------------------------
# data("ge_cgh_locIGR", package = "gliomaData")
#
# blocks <- ge_cgh_locIGR$multiblocks
# Loc <- factor(ge_cgh_locIGR$y)
# levels(Loc) <- colnames(ge_cgh_locIGR$multiblocks$y)
# blocks[[3]] <- Loc
#
# vapply(blocks, NCOL, FUN.VALUE = 1L)
## -----------------------------------------------------------------------------
# fit.rgcca <- rgcca(blocks = blocks, response = 3, ncomp = 2, verbose = FALSE)
## -----------------------------------------------------------------------------
# fit.rgcca$call$connection
# fit.rgcca$call$tau
## -----------------------------------------------------------------------------
# fit.rgcca$primal_dual
## -----------------------------------------------------------------------------
# system.time(
# rgcca(blocks = blocks, response = 3)
# )
## ----fig-sample2, fig.align='center', fig.height = 12, fig.width=18, fig.pos = "H", fig.cap = "Graphical display of the tumors obtained by crossing the block components, and colored according to their location."----
# plot(fit.rgcca, type = "sample", block = 1:2,
# comp = 1, response = Loc, cex = 2)
## -----------------------------------------------------------------------------
# fit.sgcca <- rgcca(blocks = blocks, response = 3, ncomp = 2,
# sparsity = c(0.0710, 0.2000, 1),
# verbose = FALSE)
## -----------------------------------------------------------------------------
# summary(fit.sgcca)
## ----cache = TRUE-------------------------------------------------------------
# set.seed(0)
# in_train <- caret::createDataPartition(
# blocks[[3]], p = .75, list = FALSE
# )
# training <- lapply(blocks, function(x) as.matrix(x)[in_train, , drop = FALSE])
# testing <- lapply(blocks, function(x) as.matrix(x)[-in_train, , drop = FALSE])
#
# cv_out <- rgcca_cv(blocks = training, response = 3,
# par_type = "sparsity",
# par_value = c(.2, .2, 0),
# par_length = 10,
# prediction_model = "lda",
# validation = "kfold",
# k = 7, n_run = 3, metric = "Balanced_Accuracy",
# n_cores = 1)
## -----------------------------------------------------------------------------
# summary(cv_out)
## ----fig-cv, fig.height = 12, fig.width=18, fig.pos = "H", fig.cap = "Balanced accuracies of the models on the different validation folds for the different tuning parameter sets."----
# plot(cv_out, cex = 2)
## -----------------------------------------------------------------------------
# fit <- rgcca(cv_out)
# summary(fit)
## -----------------------------------------------------------------------------
# pred <- rgcca_predict(fit, blocks_test = testing, prediction_model = "lda")
## -----------------------------------------------------------------------------
# pred$confusion$test
## -----------------------------------------------------------------------------
# projection <- rgcca_transform(fit, blocks_test = testing)
## ----cache = TRUE, message = FALSE--------------------------------------------
# set.seed(0)
# fit_stab <- rgcca_stability(fit,
# keep = vapply(
# fit$a, function(x) mean(x != 0),
# FUN.VALUE = 1.0
# ),
# n_boot = 100, verbose = TRUE, n_cores = 1)
## ----cache = TRUE-------------------------------------------------------------
# set.seed(0)
# boot_out <- rgcca_bootstrap(fit_stab, n_boot = 500)
## ----fig-boot2, fig.height = 12, fig.width=18, fig.pos = "H", fig.cap = "Bootstrap confidence intervals for the block-weight vectors associated with GE."----
# plot(boot_out, block = 1,
# display_order = FALSE,
# n_mark = 50, cex = 1.5, cex_sub = 17,
# show_star = TRUE)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.