Nothing
#' @importFrom stats model.response
#' @importFrom lme4 getME VarCorr
#' @rawNamespace
#' if(getRversion() >= "3.3.0") {
#' importFrom("stats", sigma)
#' } else {
#' importFrom("lme4", sigma)
#' }
extract.lmerModDesign <- function(m) {
X <- getME(m,"X")
Z <- as.matrix(getME(m,"Z"))
v <- VarCorr(m)
resvar <- sigma(m)^2
Sigma.l <- lapply(v,function(x) x/resvar) #Cov(b)/ Var(Error)
k <- getME(m,"n_rtrms") #how many grouping factors
q <- lapply(Sigma.l,NROW) #how many variance components in each grouping factor
## OR lapply(m@cnms,length) -- but we should have an extractor for this
nlevel<-sapply(m@flist, function(x) length(levels(x))) #how many inner blocks in Sigma_i
## works as is -- but we should have an extractor
Vr <- matrix(0,NCOL(Z),NCOL(Z)) #Cov(RanEf)/Var(Error)
from <- 1
for(i in 1:k)
{
ii<-nlevel[i]
inner.block<-as.matrix(Sigma.l[[i]])
to<-from-1+ii*NCOL(inner.block)
Vr[from:to,from:to]<- inner.block %x% diag(ii)
from<-to+1
}
return(list(
Vr=Vr, #Cov(RanEf)/Var(Error)
X=X,
Z=Z,
sigmasq=resvar,
lambda=unique(diag(Vr)),
y=model.response(model.frame(m)),
k=k
))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.