Nothing
#' Apply Proximity Indexed Value (PIV) method
#'
#' @param mat A numeric matrix containing the values for different properties
#' of different alternatives.
#' @param weights A numeric vector containing the weights of each property.
#' @param beneficial.vector A numeric vector containing the column indices of beneficial
#' criteria. Non-beneficial criteria are assumed to be the remaining columns.
#'
#' @return A numeric vector containing the calculated PIV scores for each alternative.
#'
#'
#' @examples
#' mat <- matrix(c(80, 60, 90,
#' 75, 85, 95,
#' 70, 65, 85,
#' 60, 75, 80),
#' nrow = 4, byrow = TRUE)
#' colnames(mat) <- c("Criterion 1", "Criterion 2", "Criterion 3")
#' weights <- c(0.4, 0.3, 0.3)
#' beneficial.vector <- c(1, 2, 3)
#' apply.PIV(mat, weights, beneficial.vector)
#' @export apply.PIV
apply.PIV <- function(mat, weights, beneficial.vector) {
X <- mat
for (j in seq_len(ncol(mat))) {
X[, j] <- (X[, j] / sqrt(sum(X[, j]^2))) * weights[j]
}
for (j in seq_len(ncol(mat))) {
if (j %in% beneficial.vector) {
X[, j] <- max(X[, j]) - X[, j]
} else {
X[, j] <- X[, j] - min(X[, j])
}
}
D <- rowSums(X)
return(D)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.