Description Usage Arguments Details Value Methods Author(s) References See Also Examples
Generic function for the computation of the Kolmogorov(-Smirnov) minimum distance estimator.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | ksEstimator(x, distribution, ...)
## S4 method for signature 'numeric,Binom'
ksEstimator(x, distribution, param, eps = .Machine$double.eps^0.5)
## S4 method for signature 'numeric,Pois'
ksEstimator(x, distribution, param, eps = .Machine$double.eps^0.5)
## S4 method for signature 'numeric,Norm'
ksEstimator(x, distribution, param, eps = .Machine$double.eps^0.5)
## S4 method for signature 'numeric,Lnorm'
ksEstimator(x, distribution, param, eps = .Machine$double.eps^0.5)
## S4 method for signature 'numeric,Gumbel'
ksEstimator(x, distribution, param, eps = .Machine$double.eps^0.5)
## S4 method for signature 'numeric,Exp'
ksEstimator(x, distribution, param, eps = .Machine$double.eps^0.5)
## S4 method for signature 'numeric,Gammad'
ksEstimator(x, distribution, param, eps = .Machine$double.eps^0.5)
|
x |
sample |
distribution |
object of class |
... |
additional parameters |
param |
name of the unknown parameter. If missing all parameters of the corresponding distribution are estimated. |
eps |
the desired accuracy (convergence tolerance). |
In case of discrete distributions the Kolmogorov distance is computed and
the parameters which lead to the minimum distance are returned. In case of
absolutely continuous distributions ks.test
is called and the parameters
which minimize the corresponding test statistic are returned.
The Kolmogorov minimum distance estimator is computed. Returns a list
with components named like the parameters of distribution
.
Binomial distributions.
Poisson distributions.
Normal distributions.
Lognormal distributions.
Gumbel distributions.
Exponential distributions.
Gamma distributions.
Matthias Kohl Matthias.Kohl@stamats.de
Rieder, H. (1994) Robust Asymptotic Statistics. New York: Springer.
Kohl, M. (2005) Numerical Contributions to the Asymptotic Theory of Robustness. Bayreuth: Dissertation.
1 2 3 4 5 6 7 8 | x <- rnorm(100, mean = 1, sd = 2)
ksEstimator(x=x, distribution = Norm()) # estimate mean and sd
ksEstimator(x=x, distribution = Norm(mean = 1), param = "sd") # estimate sd
ksEstimator(x=x, distribution = Norm(sd = 2), param = "mean") # estimate mean
mean(x)
median(x)
sd(x)
mad(x)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.