Nothing
library(RSNNS)
basePath <- ("./")
data(iris)
set.seed(2)
#normalize data
inputs <- normalizeData(iris[,1:4], "norm")
#outputs <- decodeClassLabels(iris[,5])
outputs <- decodeClassLabels(iris[,5], valTrue=0.9, valFalse=0.1)
numHiddenUnits <- 10
snnsObject <- SnnsRObjectFactory()
snnsObject$setLearnFunc('Quickprop')
snnsObject$setUpdateFunc('Topological_Order')
snnsObject$setUnitDefaults(1,0,1,0,1,'Act_Logistic','Out_Identity')
snnsObject$createNet(c(ncol(inputs),numHiddenUnits,ncol(outputs)), TRUE)
patset <- snnsObject$createPatSet(inputs, outputs)
snnsObject$setCurrPatSet(patset$set_no)
snnsObject$shufflePatterns(TRUE)
snnsObject$DefTrainSubPat()
snnsObject$initializeNet(-1)
snnsObject$saveNet(paste(basePath,"mlp_irisSnnsR_untrained.net",sep=""),"mlp_irisSnnsR_untrained.net")
parameters <- c(0.2, 0, 0, 0, 0)
maxit <- 100
error <- vector()
for(i in 1:maxit) {
res <- snnsObject$learnAllPatterns(parameters)
error[i] <- res[[2]]
}
plot(error, type="l")
predictions <- snnsObject$predictCurrPatSet("output", c(0))
confusionMatrix(outputs,predictions)
snnsObject$saveNet(paste(basePath,"mlp_irisSnnsR.net",sep=""),"mlp_irisSnnsR")
snnsObject$saveNewPatterns(paste(basePath,"mlp_irisSnnsR.pat",sep=""), patset$set_no)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.