Nothing
library(RSNNS)
set.seed(2)
data(iris)
#shuffle the vector
iris <- iris[sample(nrow(iris)),]
irisValues <- iris[,1:4]
#irisTargets <- decodeClassLabels(iris[,5])
irisTargets <- decodeClassLabels(iris[,5], valTrue=0.9, valFalse=0.1)
iris <- splitForTrainingAndTest(irisValues, irisTargets, ratio=0.15)
#normalize data
iris <- normTrainingAndTestSet(iris)
#parameterGrid <- expand.grid(c(3,5,9,15), c(0.00316, 0.0147, 0.1))
parameterGrid <- expand.grid(c(3,5,9,15), c(0.00316, 0.0147, 0.1))
colnames(parameterGrid) <- c("nHidden", "learnRate")
rownames(parameterGrid) <- paste("nnet-", apply(parameterGrid, 1, function(x) {paste(x,sep="", collapse="-")}), sep="")
models <- apply(parameterGrid, 1, function(p) {
mlp(iris$inputsTrain, iris$targetsTrain, size=p[1], learnFunc="Std_Backpropagation",
learnFuncParams=c(p[2], 0.1), maxit=200, inputsTest=iris$inputsTest,
targetsTest=iris$targetsTest)
})
par(mfrow=c(4,3))
for(modInd in 1:length(models)) {
plotIterativeError(models[[modInd]], main=names(models)[modInd])
}
trainErrors <- data.frame(lapply(models, function(mod) {
error <- sqrt(sum((mod$fitted.values - iris$targetsTrain)^2))
error
}))
testErrors <- data.frame(lapply(models, function(mod) {
pred <- predict(mod,iris$inputsTest)
error <- sqrt(sum((pred - iris$targetsTest)^2))
error
}))
t(trainErrors)
t(testErrors)
trainErrors[which(min(trainErrors) == trainErrors)]
testErrors[which(min(testErrors) == testErrors)]
model <- models[[which(min(testErrors) == testErrors)]]
model
summary(model)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.