visualizeSampleClustering | R Documentation |
Open an interactive figure with 2D scatter-plot of all particles with axis choice. Grey color (label=0) is for data to cleaned or to remove in classification process.
visualizeSampleClustering(
data.sample,
label = NULL,
clustering.name = "proposed clustering",
cluster.summary = NULL,
RclusTool.env = initParameters(),
prototypes = NULL,
profile.mode = "none",
selection.mode = "none",
compare.mode = "off",
pairs = NULL,
features.mode = "initial",
wait.close = FALSE,
fontsize = 9
)
data.sample |
list containing features, profiles and clustering results. |
label |
vector of labels. |
clustering.name |
character vector specifying the clustering method used to get labels. |
cluster.summary |
data.frame containing the clusters summaries (as returned by 'clusterSummary'). |
RclusTool.env |
environment in which all global parameters, raw data and results are stored. |
prototypes |
list containing vectors of prototypes indices. |
profile.mode |
character vector specifying the plot mode of profiles. Must be 'none' (default), 'whole sample', 'cluster i' or 'constrained pairs'. |
selection.mode |
character vector specifying the selection mode of profiles. Must be 'none' (default), 'prototypes' or 'pairs'. |
compare.mode |
character vector specifying the mode of comparison between two clusterings results. Must be 'off' (default) or 'on'. |
pairs |
list of constrained pairs (must-link and cannot-link). |
features.mode |
character vector specifying the plot mode of features (projection in a specific space). Must be 'initial' (default), 'preprocessed', 'pca', 'pca_full' or 'spectral', or prefixed versions ('sampled', 'scaled') of those space names. |
wait.close |
boolean: if FALSE (default), the following steps of the analysis calculations are computed even if the window is not closed. |
fontsize |
size of font (default is 9) |
visualizeSampleClustering opens an interactive figure with 2D scatter-plot of all particles with axis choice
prototypes in selection.mode
= "prototypes" mode, pairs in selection.mode
= "pairs" mode.
plotProfile
, plotSampleFeatures
dat <- rbind(matrix(rnorm(100, mean = 2, sd = 0.3), ncol = 2),
matrix(rnorm(100, mean = 4, sd = 0.3), ncol = 2),
matrix(rnorm(100, mean = 6, sd = 0.3), ncol = 2))
colnames(dat) <- c("x","y")
tf1 <- tempfile()
write.table(dat, tf1, sep=",", dec=".")
sig <- data.frame(ID=rep(1:150, each=30), SIGNAL=rep(dnorm(seq(-2,2,length=30)),150))
tf2 <- tempfile()
write.table(sig, tf2, sep=",", dec=".")
x <- importSample(file.features=tf1, file.profiles=tf2)
res <- KmeansQuick(x$features$initial$x, K=3)
new.labels <- formatLabelSample(res$cluster, x)
visualizeSampleClustering(x, label = new.labels, clustering.name="K-means",
profile.mode="whole sample")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.