# R/hermite.expansion.R In Rdistance: Distance-Sampling Analyses for Density and Abundance Estimation

#### Documented in hermite.expansion

#' @title Calculation of Hermite expansion for detection function likelihoods
#'
#' @description Computes the Hermite expansion terms used in the likelihood of a distance analysis.
#'   More generally, will compute a Hermite expansion of any numeric vector.
#'
#' @param x In a distance analysis, \code{x} is a numeric vector containing the proportion of a strip
#'   transect's half-width at which a group of individuals was sighted.  If \eqn{w} is the strip transect
#'   half-width or maximum sighting distance, and \eqn{d} is the perpendicular off-transect distance
#'   to a sighted group (\eqn{d\leq w}{d <= w}), \code{x} is usually \eqn{d/w}.  More generally, \code{x}
#'   is a vector of numeric values.
#' @param expansions A scalar specifying the number of expansion terms to compute. Must be one of the integers 1, 2, 3, or 4.
#' @details There are, in general, several expansions that can be called Hermite. The Hermite expansion used here is:
#'   \itemize{
#'     \item \bold{First term}: \deqn{h_1(x)=x^4 - 6x^2 + 3,}{h1(x) = x^4 - 6*(x)^2 +3,}
#'     \item \bold{Second term}: \deqn{h_2(x)=x^6 - 15x^4 + 45x^2 - 15,}{h2(x) = (x)^6 - 15*(x)^4 + 45*(x)^2 - 15,}
#'     \item \bold{Third term}: \deqn{h_3(x)=x^8 - 28x^6 + 210x^4 - 420x^2 + 105,}{h3(x) = (x)^8 - 28*(x)^6 + 210*(x)^4 - 420*(x)^2 + 105,}
#'     \item \bold{Fourth term}: \deqn{h_4(x)=x^10 - 45x^8 + 630x^6 - 3150x^4 + 4725x^2 - 945,}{h4(x) = (x)^10 - 45*(x)^8 + 630*(x)^6 - 3150*(x)^4 + 4725*(x)^2 - 945,}
#'   }
#'   The maximum number of expansion terms computed is 4.
#' @return A matrix of size \code{length(x)} X \code{expansions}.  The columns of this matrix are the Hermite polynomial expansions of \code{x}.
#'   Column 1 is the first expansion term of \code{x}, column 2 is the second expansion term of \code{x}, and so on up to \code{expansions}.
#'
#'   of user defined likelihoods in \code{\link{dfuncEstim}}.
#'
#' @examples set.seed(83828233)
#'   x <- rnorm(1000) * 100
#'   x <- x[0 < x & x < 100]
#'   herm.expn <- hermite.expansion(x, 3)
#' @keywords model
#' @export

hermite.expansion <- function(x, expansions){
# Calculates hermite expansion for detection function.
# Input:
#       x = distances / w
#       expansions = number of expansion terms (1 - 5)
#
# Output:
#       expansion = a list of vectors, with
#                   expansion[[1]] = expansion for the 1st term,
#                   expansion[[2]] = expansion for the 2nd, and so on.
#
# Based on "probabilists' hermite polynomial as defined on Wikipedia.com

if (expansions > 4){
warning("Too many Hermite polynomial expansion terms. Only 4 used.")
expansions = 4
}

if( expansions < 1 ) stop( "Number of expansions must be >= 1" )

expansion = matrix(nrow=length(x), ncol=expansions)

expansion[,1] = x^4 - 6*(x)^2 +3

if(expansions >= 2){
expansion[,2] = (x)^6 - 15*(x)^4 + 45*(x)^2 - 15
}
if(expansions >= 3){
expansion[,3] = (x)^8 - 28*(x)^6 + 210*(x)^4 - 420*(x)^2 + 105
}
if(expansions >= 4){
expansion[,4] =  (x)^10 - 45*(x)^8 + 630*(x)^6 - 3150*(x)^4 + 4725*(x)^2 - 945
}

return(expansion)

}


## Try the Rdistance package in your browser

Any scripts or data that you put into this service are public.

Rdistance documentation built on July 9, 2023, 6:46 p.m.