Nothing
#' @title Simpson numerical integration coefficients
#'
#' @description
#' Return a vector of Simpson's Composite numerical integration
#' coefficients.
#'
#' @param n Number of coefficients, which is the number of points
#' at which the function of interest is evaluated. The number of
#' intervals is \code{(n-1)/2}. This number must be odd.
#'
#' @return A vector of Simpson Composite rule coefficients
#' suitable for numeric integration. The return is a vector of
#' integers alternating between 4 and 2, with 1's on each end.
#'
#' @details
#' Let \code{x} be an vector of equally spaced points in the domain
#' of a function f (equally spaced is critical).
#' Let \code{y = f(x)}. The numeric integral of f from \code{min(x)}
#' to \code{max(x)} is
#' \code{sum(simpsonCoefs(length(y)) * y) * (x[2] - x[1]) / 3}.
#'
#' @examples
#'
#' x <- seq(0, 9, length=13)
#' y <- x^2
#'
#' scoefs <- simpsonCoefs(length(x))
#'
#' # exact integral is 9^3/3 = 243
#' sum( scoefs*y ) * (x[2] - x[1]) / 3
#'
#' @export
simpsonCoefs <- function( n ){
if( (n %% 2) == 0 ){
stop(paste("Number of Simpson coefficients must be odd. Found", n))
}
intCoefs <- c(rep( c(2,4), ((n-1)/2) ), 1)
intCoefs[1] <- 1
intCoefs
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.