Nothing
#' This function runs the case studies included in the package
#' @param TS routine to calculate test statistic(s) or p value(s).
#' @param study either the name of the study, or its number. If missing all the studies are run.
#' @param TSextra =list(aaa=1), list passed to TS.
#' @param With.p.value =FALSE does user supplied routine return p values?
#' @param BasicComparison =TRUE if true compares tests on one default value of parameter of the alternative distribution.
#' @param nsample = 500, desired sample size.
#' @param alpha =0.05 type I error
#' @param param_alt (list of) values of parameter under the alternative hypothesis. If missing included values are used.
#' @param maxProcessor number of cores to use for parallel programming
#' @param B = 1000 number of simulation runs
#' @return A (list of ) matrices of p.values
#' @examples
#' # New test is a simple chi-square test:
#' chitest=function(x, pnull, param, TSextra) {
#' nbins=TSextra$nbins
#' bins=quantile(x, (0:nbins)/nbins)
#' O=hist(x, bins, plot=FALSE)$counts
#' if(param[1]!=-99) { #with parameter estimation
#' E=length(x)*diff(pnull(bins, param))
#' chi=sum((O-E)^2/E)
#' pval=1-pchisq(chi, nbins-1-length(param))
#' }
#' else {
#' E=length(x)*diff(pnull(bins))
#' chi=sum((O-E)^2/E)
#' pval=1-pchisq(chi,nbins-1)
#' }
#' out=ifelse(TSextra$statistic, chi, pval)
#' names(out)="ChiSquare"
#' out
#' }
#' TSextra=list(nbins=10, statistic=FALSE) # Use 10 bins, test routine returns p-value
#' run.studies(chitest, TSextra=TSextra, With.p.value=TRUE, maxProcessor=1, B=200)
#' @export
run.studies <- function(TS, study, TSextra=list(aaa=1), With.p.value=FALSE, BasicComparison=TRUE,
nsample=500, alpha=0.05, param_alt, maxProcessor, B=1000) {
B=B[1]
if(!is.function(TS)) {
if(missing(TS) || !is.logical(TS)) {
message("TS should either be a function, or TRUE/FALSE (for continuous or discrete) to run the included tests")
return(NULL)
}
Continuous=TS
}
else {
Continuous=ifelse("vals" %in% names(formals(TS)), FALSE, TRUE)
WithTSextra=ifelse("aaa"%in%names(TSextra), FALSE, TRUE)
if(Continuous) {
if(any(names(unlist(formals(TS))[1:3])!=c("x", "pnull", "param"))) {
message("for continuous data the function TS should have arguments x, pnull, param and TSextra (optional)")
return(NULL)
}
}
else {
if(any(names(unlist(formals(TS))[1:4])!=c("x", "pnull", "param", "vals"))) {
message("for discrete data the function TS should have arguments x, pnull, param, vals and TSextra (optional)")
return(NULL)
}
}
}
if(missing(maxProcessor)) maxProcessor=parallel::detectCores()-1
I80cont=c(12,11,8,11,13,7,9,9,24,8,12,13,7,13,11,19,8,14,17,13)
I80disc=c(12,11,9,11,14,7,9,9,21,9,11,13,8,15,8,23,8,14,15,12)
if(Continuous) I80=I80cont
else I80=I80disc
NewParams=ifelse(alpha==0.05, FALSE, TRUE)
if(!missing(param_alt)) {
NewParams=TRUE
message("For new parameter values under the alternative or alpha!=0.05 power values
will also be calculated for included tests")
if(!missing(study) && length(study)>1) {
if(!is.list(param_alt)) {
message("param_alt has to be a list with the same length as study")
return(NULL)
}
}
else if(!is.list(param_alt)) param_alt=list(param_alt)
}
if(NewParams) BasicComparison=FALSE
list.of.studies=c(
"uniform.linear",
"uniform.quadratic",
"uniform.bump",
"uniform.sine",
"beta22.betaaa",
"beta22.beta2a",
"normal.shift",
"normal.stretch",
"normal.t",
"normal.outlier1",
"normal.outlier2",
"exponential.gamma",
"exponential.weibull",
"exponential.bump",
"trunc.exponential.linear",
"normal.t.est",
"exponential.weibull.est",
"trunc.exponential.linear.est",
"exponential.gamma.est",
"normal.cauchy.est"
)
if(Continuous) list.of.studies=paste0(list.of.studies,".cont")
else list.of.studies=paste0(list.of.studies,".disc")
if(missing(study)) study=1:20
else BasicComparison=FALSE
if(is.numeric(study)) study=list.of.studies[study]
else {
if(Continuous) study=paste0(study,".cont")
else study=paste0(study,".disc")
}
out=as.list(seq_along(study))
names(out)=study
for(i in seq_along(study)) {
message(paste("Running case", study[i], "..."))
WithEstimation=FALSE
if(endsWith(substring(study[i],1,nchar(study[i])-5),"est")) WithEstimation=TRUE
pwrold=Rgof::power_studies_results[[study[i]]]
tmp=case.studies(study[i], nsample)
TSextra$pnull=tmp$pnull
if("phat"%in%names(tmp)) phat=tmp$phat
else phat=function(x) -99
if(BasicComparison) tmp$param_alt=tmp$param_alt[I80[i]]
if(NewParams || !is.function(TS)) {
if(!missing(param_alt)) tmp$param_alt=param_alt[[i]]
if(Continuous) {
if(WithEstimation) pwrold=Rgof::gof_power(tmp$pnull, NA, tmp$rnull,
tmp$ralt, tmp$param_alt, phat=tmp$phat, maxProcessor=maxProcessor,B=B)
else pwrold=Rgof::gof_power(tmp$pnull, NA, tmp$rnull,
tmp$ralt, tmp$param_alt, maxProcessor=maxProcessor,B=B)
}
else {
if(WithEstimation) pwrold=Rgof::gof_power(tmp$pnull, tmp$vals, tmp$rnull,
tmp$ralt, tmp$param_alt, phat=tmp$phat, maxProcessor=maxProcessor,B=B)
else pwrold=Rgof::gof_power(tmp$pnull, tmp$vals, tmp$rnull,
tmp$ralt, tmp$param_alt, maxProcessor=maxProcessor,B=B)
}
if(!is.matrix(pwrold)) {
pwrold=rbind(pwrold)
rownames(pwrold)=tmp$param_alt
}
}
if(!is.function(TS)) {out[[i]]=pwrold;next}
if(With.p.value) {
if(Continuous) {
pwr=power_newtest(TS, NA, tmp$pnull,
tmp$ralt, tmp$param_alt, phat, TSextra, alpha, B[1])
}
else {
pwr=power_newtest(TS, tmp$vals, tmp$pnull,
tmp$ralt, tmp$param_alt, phat, TSextra, alpha, B[1])
}
}
else {
if(Continuous && WithEstimation && WithTSextra)
pwr=Rgof::gof_power(tmp$pnull, NA, tmp$rnull,
tmp$ralt, tmp$param_alt, phat=tmp$phat, TS=TS,
TSextra=TSextra, maxProcessor=maxProcessor, B=B)
if(Continuous && !WithEstimation && WithTSextra)
pwr=Rgof::gof_power(tmp$pnull, NA, tmp$rnull,
tmp$ralt, tmp$param_alt, TS=TS, TSextra=TSextra,
maxProcessor=maxProcessor, B=B)
if(!Continuous && WithEstimation && WithTSextra)
pwr=Rgof::gof_power(tmp$pnull, tmp$vals, tmp$rnull,
tmp$ralt, tmp$param_alt, phat=tmp$phat, TS=TS,
TSextra=TSextra, maxProcessor=maxProcessor, B=B)
if(!Continuous && !WithEstimation && WithTSextra)
pwr=Rgof::gof_power(tmp$pnull, tmp$vals, tmp$rnull,
tmp$ralt, tmp$param_alt, TS=TS, TSextra=TSextra,
maxProcessor=maxProcessor, B=B)
if(Continuous && WithEstimation && !WithTSextra)
pwr=Rgof::gof_power(tmp$pnull, NA, tmp$rnull,
tmp$ralt, tmp$param_alt, phat=tmp$phat, TS=TS,
maxProcessor=maxProcessor, B=B)
if(Continuous && !WithEstimation && !WithTSextra)
pwr=Rgof::gof_power(tmp$pnull, NA, tmp$rnull,
tmp$ralt, tmp$param_alt, TS=TS,
maxProcessor=maxProcessor, B=B)
if(!Continuous && WithEstimation && !WithTSextra)
pwr=Rgof::gof_power(tmp$pnull, tmp$vals, tmp$rnull,
tmp$ralt, tmp$param_alt, phat=tmp$phat, TS=TS,
maxProcessor=maxProcessor, B=B)
if(!Continuous && !WithEstimation && !WithTSextra)
pwr=Rgof::gof_power(tmp$pnull, tmp$vals, tmp$rnull,
tmp$ralt, tmp$param_alt, TS=TS,
maxProcessor=maxProcessor, B=B)
if(length(tmp$param_alt)==1) {
dta=tmp$ralt(tmp$param_alt[1])
if(Continuous && !WithTSextra) nm=TS(dta, tmp$pnull, phat(dta))
if(Continuous && WithTSextra) nm=TS(dta, tmp$pnull, phat(dta), TSextra)
if(!Continuous && !WithTSextra) nm=TS(dta, tmp$pnull, phat(dta), tmp$vals)
if(!Continuous && WithTSextra) nm=TS(dta, tmp$pnull, phat(dta), tmp$vals, TSextra)
pwr=matrix(pwr, 1, length(pwr))
colnames(pwr)=names(nm)
rownames(pwr)=tmp$param_alt
}
}
if(BasicComparison) out[[i]]=cbind(pwr, pwrold[I80[i], , drop=FALSE])
else out[[i]]=cbind(pwr[, , drop=FALSE], pwrold[, , drop=FALSE])
}
if(BasicComparison) {
A=matrix(0, 20, ncol(out[[1]]))
for(i in 1:20) A[i, ]= out[[i]][1, ]
rownames(A) = list.of.studies
colnames(A) = colnames(out[[1]])
a1=apply(A, 1, rank)
message("Average rank of the tests:")
print(sort(apply(a1,1,mean)))
return(A)
}
if(length(out)==1) return(out[[1]])
out
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.