Description Usage Arguments Value Author(s) Examples
For data on grassmann manifold x_1,x_2,…,x_N \in Gr(k,n), compute pairwise distances d(x_i,x_j) via several metrics. The distance type "intrinsic"
corresponds to
geodesic distance while "extrinsic"
is equivalent to "chordal"
distance.
1 2 3 4 5 6 7 |
input |
either an array of size (n\times k\times N) or a list of length N whose elements are (n\times k) orthonormal basis (ONB) on Grassmann manifold. |
type |
type of distance measure. Name of each type is Case Insensitive and hyphen can be omitted. |
as.dist |
a logical; |
useR |
a logical; |
a dist
object or (N\times N) symmetric matrix depending on as.dist
.
Kisung You
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 | ## generate a dataset with two types of Grassmann elements
# group1 : first four columns of (8x8) identity matrix + noise
# group2 : last four columns of (8x8) identity matrix + noise
mydata = list()
sdval = 0.25
diag8 = diag(8)
for (i in 1:10){
mydata[[i]] = qr.Q(qr(diag8[,1:4] + matrix(rnorm(8*4,sd=sdval),ncol=4)))
}
for (i in 11:20){
mydata[[i]] = qr.Q(qr(diag8[,5:8] + matrix(rnorm(8*4,sd=sdval),ncol=4)))
}
## try 'intrinsic' distance using C++ implementation
dmat = gr.pdist(mydata, type="intrinsic", as.dist=FALSE)
opar = par(no.readonly=TRUE)
par(pty="s")
image(dmat, main="intrinsic distance")
par(opar)
## compute and visualize distances for all types
# we will iterate over all measures
alltypes = c("intrinsic","extrinsic","asimov","binet-cauchy",
"chordal","fubini-study","martin","procrustes","projection","spectral")
ntypes = length(alltypes)
opar <- par(no.readonly=TRUE)
par(mfrow=c(2,5), pty="s")
for (i in 1:ntypes){
dmat = gr.pdist(mydata, type=alltypes[i], as.dist=FALSE)
image(dmat[,20:1], main=alltypes[i])
}
par(opar)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.