Description Usage Arguments Value Author(s) Examples
Given the type
of distance measure and agglomeration scheme method
, gr.hclust
performs hierarchical clustering on
Grassmann manifold using fastcluster package, which returns the same object as stats package's implementation while providing more efficient computation.
See hclust
for more details.
1 2 3 4 5 6 7 8 |
input |
either an array of size (n\times k\times N) or a list of length N whose elements are (n\times k) orthonormal basis (ONB) on Grassmann manifold. |
type |
type of distance measure. measure. Name of each type is Case Insensitive and hyphen can be omitted. |
method |
he agglomeration method to be used. This must be (an unambiguous abbreviation of) one of |
members |
|
an object of class hclust
. See hclust
for details.
Kisung You
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 | ## generate a dataset with two types of Grassmann elements
# group1 : first four columns of (8x8) identity matrix + noise
# group2 : last four columns of (8x8) identity matrix + noise
mydata = list()
sdval = 0.25
diag8 = diag(8)
for (i in 1:10){
mydata[[i]] = qr.Q(qr(diag8[,1:4] + matrix(rnorm(8*4,sd=sdval),ncol=4)))
}
for (i in 11:20){
mydata[[i]] = qr.Q(qr(diag8[,5:8] + matrix(rnorm(8*4,sd=sdval),ncol=4)))
}
## try hierarchical clustering with "intrinsic" distance
opar <- par(no.readonly=TRUE)
hint <- gr.hclust(mydata, type="intrinsic")
plot(hint, main="intrinsic+single")
par(opar)
## do hierarchical clustering with different distance measures
alltypes = c("intrinsic","extrinsic","asimov","binet-cauchy",
"chordal","fubini-study","martin","procrustes","projection","spectral")
ntypes = length(alltypes)
opar <- par(no.readonly=TRUE)
par(mfrow=c(2,5), pty="s")
for (i in 1:ntypes){
hout = gr.hclust(mydata, type=alltypes[i])
plot(hout, main=paste0("hclust::",alltypes[i]))
}
par(opar)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.