model_polytomous_3dindex
creates indices extracting 3D stats
model_polytomous_3dresponse
converts responses from 2D to 3D
hermite_gauss
stores pre-computed hermite gaussian
quadratures points and weights
nr_iteration
updates the parameters using the Newton-Raphson method
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | model_polytomous_3dindex(u)
model_polytomous_3dresponse(u)
hermite_gauss(degree = c("20", "11", "7"))
nr_iteration(param, free, dv, h_max, lr, bound)
estimate_3pl_debug(tracking, k)
estimate_3pl_eval(true_params, t, a, b, c, t_free, a_free, b_free, c_free)
estimate_gpcm_debug(tracking, k)
estimate_gpcm_eval(true_params, n_c, t, a, b, d, t_free, a_free, b_free,
d_free)
estimate_grm_debug(tracking, k)
estimate_grm_eval(true_params, n_c, t, a, b, t_free, a_free, b_free)
|
u |
the observed response, 2d matrix, values start from 0 |
degree |
the degree of hermite-gauss quadrature: '20', '11', '7' |
param |
the parameter being estimated |
free |
TRUE to free parameters, otherwise fix parameters |
dv |
the first and second derivatives |
h_max |
the maximum value of h |
lr |
the learning rate |
bound |
the lower and upper bounds of the parameter |
tracking |
estimation tracking information |
k |
the number of iterations in estimation |
true_params |
a list of true parameters |
t |
estimated ability parameters |
a |
estimated discrimination parameters |
b |
estimated difficulty parameters |
c |
estimated guessing parameters |
t_free |
TRUE to estimate ability parameters, otherwise fix |
a_free |
TRUE to estimate discrimination parameters, otherwise fix |
b_free |
TRUE to estimate difficulty parameters, otherwise fix |
c_free |
TRUE to estimate guessing parameters, otherwise fix |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.