Description Usage Arguments Value Examples
Common computations and operations for the 3PL model
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | model_3pl_prob(t, a, b, c, D = 1.702)
model_3pl_info(t, a, b, c, D = 1.702)
model_3pl_lh(u, t, a, b, c, D = 1.702, log = FALSE)
model_3pl_rescale(t, a, b, c, scale = c("t", "b"), mean = 0, sd = 1)
model_3pl_gendata(n_p, n_i, t = NULL, a = NULL, b = NULL, c = NULL,
D = 1.702, t_dist = c(0, 1), a_dist = c(-0.1, 0.2), b_dist = c(0,
0.7), c_dist = c(5, 46), t_bounds = c(-3, 3), a_bounds = c(0.01,
2.5), b_bounds = c(-3, 3), c_bounds = c(0, 0.5), missing = NULL,
...)
model_3pl_plot(a, b, c, D = 1.702, type = c("prob", "info"),
total = FALSE, xaxis = seq(-4, 4, 0.1))
model_3pl_plot_loglh(u, a, b, c, D = 1.702, xaxis = seq(-4, 4, 0.1),
verbose = FALSE)
|
t |
ability parameters, 1d vector |
a |
discrimination parameters, 1d vector |
b |
difficulty parameters, 1d vector |
c |
guessing parameters, 1d vector |
D |
the scaling constant, default=1.702 |
u |
observed responses, 2d matrix |
log |
True to return log-likelihood |
scale |
the scale, 't' for theta or 'b' for b-parameters |
mean |
the mean of the new scale |
sd |
the standard deviation of the new scale |
n_p |
the number of people to be generated |
n_i |
the number of items to be generated |
t_dist |
parameters of the normal distribution used to generate t-parameters |
a_dist |
parameters of the lognormal distribution used to generate a-parameters |
b_dist |
parameters of the normal distribution used to generate b-parameters |
c_dist |
parameters of the beta distribution used to generate c-parameters |
t_bounds |
bounds of the ability parameters |
a_bounds |
bounds of the discrimination parameters |
b_bounds |
bounds of the difficulty parameters |
c_bounds |
bounds of the guessing parameters |
missing |
the proportion or number of missing responses |
... |
additional arguments |
type |
the type of plot: 'prob' for item characteristic curve (ICC) and 'info' for item information function curve (IIFC) |
total |
TRUE to sum values over items |
xaxis |
the values of x-axis |
verbose |
TRUE to print rough maximum likelihood estimates |
model_3pl_prob
returns the resulting probabilities in a matrix
model_3pl_info
returns the resulting information in a matrix
model_3pl_lh
returns the resulting likelihood in a matrix
model_3pl_rescale
returns t, a, b, c parameters on the new scale
model_3pl_gendata
returns the generated response matrix and parameters in a list
model_3pl_plot
returns a ggplot
object
model_3pl_plot_loglh
returns a ggplot
object
1 2 3 4 5 6 7 8 | with(model_3pl_gendata(10, 5), model_3pl_prob(t, a, b, c))
with(model_3pl_gendata(10, 5), model_3pl_info(t, a, b, c))
with(model_3pl_gendata(10, 5), model_3pl_lh(u, t, a, b, c))
model_3pl_gendata(10, 5)
model_3pl_gendata(10, 5, a=1, c=0, missing=.1)
with(model_3pl_gendata(10, 5), model_3pl_plot(a, b, c, type="prob"))
with(model_3pl_gendata(10, 5), model_3pl_plot(a, b, c, type="info", total=TRUE))
with(model_3pl_gendata(5, 50), model_3pl_plot_loglh(u, a, b, c))
|
[,1] [,2] [,3] [,4] [,5]
[1,] 0.8870785 0.3407184 0.1443273 0.5071048 0.3293704
[2,] 0.9817774 0.7763845 0.3678983 0.9191988 0.6297310
[3,] 0.9508095 0.5218755 0.2085806 0.7524819 0.4561391
[4,] 0.9738848 0.6909996 0.2981836 0.8757480 0.5666616
[5,] 0.8567608 0.3060520 0.1336395 0.4330291 0.2990348
[6,] 0.9846091 0.8109599 0.4049292 0.9343881 0.6584702
[7,] 0.9421204 0.4801214 0.1918999 0.7103238 0.4291292
[8,] 0.9948975 0.9468962 0.6739610 0.9840502 0.8175577
[9,] 0.9964261 0.9660391 0.7511757 0.9899910 0.8554453
[10,] 0.9393800 0.4686746 0.1875721 0.6976192 0.4216124
[,1] [,2] [,3] [,4] [,5]
[1,] 0.14522139 0.5388499 0.7577803 0.66072336 0.32198046
[2,] 0.05833167 0.3240979 0.3291778 0.02832659 0.08115209
[3,] 0.17392816 0.2594866 0.3721514 0.70558869 0.32168318
[4,] 0.17659229 0.2035522 0.2886531 0.61545662 0.30074522
[5,] 0.06614561 0.3963745 0.4151290 0.04527184 0.10139155
[6,] 0.15986808 0.4221772 0.6074677 0.77001089 0.33952462
[7,] 0.06545955 0.3901455 0.4074778 0.04354040 0.09955350
[8,] 0.08801329 0.5660334 0.6501711 0.13133363 0.16453896
[9,] 0.12407754 0.6351796 0.8419515 0.43156526 0.27241326
[10,] 0.17659007 0.2036246 0.2887614 0.61559828 0.30077914
[,1] [,2] [,3] [,4] [,5]
[1,] 0.3748935 0.8886263 0.6146971 0.96325864 0.3720642
[2,] 0.7559848 0.9544539 0.2491149 0.98589057 0.7602875
[3,] 0.5132242 0.2329148 0.5292424 0.91362771 0.5110525
[4,] 0.3007970 0.9305647 0.3081481 0.97798309 0.2971334
[5,] 0.6901468 0.9261394 0.6824267 0.97648082 0.6937035
[6,] 0.8922485 0.8561130 0.9162319 0.21175244 0.1265105
[7,] 0.4429361 0.7139391 0.4252745 0.88801338 0.4453470
[8,] 0.6273407 0.1099050 0.6170243 0.03620682 0.6301927
[9,] 0.5834448 0.3218598 0.6020444 0.86913268 0.5807493
[10,] 0.8665709 0.8200242 0.8907620 0.69711509 0.8504959
$u
[,1] [,2] [,3] [,4] [,5]
[1,] 1 1 1 0 1
[2,] 0 1 1 1 1
[3,] 0 0 1 0 1
[4,] 0 0 0 0 1
[5,] 0 0 0 0 0
[6,] 0 1 1 1 1
[7,] 1 1 1 0 0
[8,] 1 1 1 1 1
[9,] 1 0 1 1 0
[10,] 1 1 0 1 1
$t
[1] -0.38784786 0.61560924 -0.63451438 -0.72272853 -1.82819455 -0.56524350
[7] 0.16816658 1.03678349 0.09468902 -0.16171096
$a
[1] 0.7082492 1.3321956 1.0916045 0.9259809 0.7003574
$b
[1] 0.80793482 -1.08601687 -1.09060077 0.02083232 -0.16302320
$c
[1] 0.14913749 0.06048293 0.11420052 0.08306087 0.15897911
$u
[,1] [,2] [,3] [,4] [,5]
[1,] 0 1 0 1 1
[2,] 0 1 0 0 1
[3,] 0 1 0 1 0
[4,] 1 NA 1 1 1
[5,] 0 0 0 0 1
[6,] NA 0 0 1 NA
[7,] 1 1 1 1 0
[8,] 0 1 1 1 1
[9,] 0 0 0 0 1
[10,] NA 1 NA 1 1
$t
[1] 0.3132369 -0.5582359 -0.7256920 1.7150836 -1.5299602 -0.8423131
[7] 0.5425216 0.8067298 -0.7778198 2.0032878
$a
[1] 1 1 1 1 1
$b
[1] 1.06627483 -0.30438123 -0.01022385 -0.05949673 -0.69397656
$c
[1] 0 0 0 0 0
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.