Description Usage Arguments Value Examples
Common computations and operations for the GRM
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | model_grm_prob(t, a, b, D = 1.702, raw = FALSE)
model_grm_info(t, a, b, D = 1.702)
model_grm_lh(u, t, a, b, D = 1.702, log = FALSE)
model_grm_gendata(n_p, n_i, n_c, t = NULL, a = NULL, b = NULL,
D = 1.702, t_dist = c(0, 1), a_dist = c(-0.1, 0.2), b_dist = c(0,
0.8), t_bounds = c(-3, 3), a_bounds = c(0.01, 2.5),
b_bounds = c(-3, 3), missing = NULL, ...)
model_grm_rescale(t, a, b, scale = c("t", "b"), mean = 0, sd = 1)
model_grm_plot(a, b, D = 1.702, type = c("prob", "info"),
item_level = FALSE, total = FALSE, xaxis = seq(-6, 6, 0.1),
raw = FALSE)
model_grm_plot_loglh(u, a, b, D = 1.702, xaxis = seq(-6, 6, 0.1),
verbose = FALSE)
|
t |
ability parameters, 1d vector |
a |
discrimination parameters, 1d vector |
b |
item location parameters, 2d matrix |
D |
the scaling constant, default=1.702 |
raw |
TRUE to return P* |
u |
observed scores (starting from 0), 2d matrix |
log |
TRUE to return log-likelihood |
n_p |
the number of people to be generated |
n_i |
the number of items to be generated |
n_c |
the number of score categories |
t_dist |
parameters of the normal distribution used to generate t-parameters |
a_dist |
parameters of the lognormal distribution used to generate a-parameters |
b_dist |
parameters of the normal distribution used to generate b-parameters |
t_bounds |
the bounds of the ability parameters |
a_bounds |
the bounds of the discrimination parameters |
b_bounds |
the bounds of the difficulty parameters |
missing |
the proportion or number of missing responses |
... |
additional arguments |
scale |
the scale, 't' for theta or 'b' for b-parameters |
mean |
the mean of the new scale |
sd |
the standard deviation of the new scale |
type |
the type of plot, prob for ICC and info for IIFC |
item_level |
TRUE to combine categories |
total |
TRUE to sum values over items |
xaxis |
the values of x-axis |
verbose |
TRUE to print rough maximum likelihood values |
model_grm_prob
returns the resulting probabilities in a 3d array
model_grm_info
returns the resulting information in a 3d array
model_grm_lh
returns the resulting likelihood in a matrix
model_grm_gendata
returns the generated response data and parameters in a list
model_grm_rescale
returns t, a, b parameters on the new scale
model_grm_plot
returns a ggplot
object
model_grm_plot_loglh
returns a ggplot
object
1 2 3 4 5 6 7 8 | with(model_grm_gendata(10, 5, 3), model_grm_prob(t, a, b))
with(model_grm_gendata(10, 5, 3), model_grm_info(t, a, b))
with(model_grm_gendata(10, 5, 3), model_grm_lh(u, t, a, b))
model_grm_gendata(10, 5, 3)
model_grm_gendata(10, 5, 3, missing=.1)
with(model_grm_gendata(10, 5, 3), model_grm_plot(a, b, type='prob'))
with(model_grm_gendata(10, 5, 3), model_grm_plot(a, b, type='info', item_level=TRUE))
with(model_grm_gendata(5, 50, 3), model_grm_plot_loglh(u, a, b))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.